Abstract

The phase shift upon reflection from one-dimensional photonic crystal composed of alternating layers of mu-negative materials and positive-index materials is numerically investigated. It is found that the phase difference between TE and TM reflected waves can remain constant in a rather wide frequency range within the single-negative gap of the proposed structure. Such property can be used to design broadband phase retarder. By varying the incident angle, the phase difference of the retarder can be adjusted from 0 to π, while the working frequency range of the retarder remains almost unchanged. Moreover, by varying the scaling factor or the thickness ratio of the two constituent materials, the working frequency range of the phase retarder can be conveniently tuned.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
    [CrossRef]
  4. C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008).
    [CrossRef]
  5. M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008).
    [CrossRef]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef]
  7. A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002).
    [CrossRef]
  8. Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
    [CrossRef]
  9. W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34, 2676–2678 (2009).
    [CrossRef]
  10. Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
    [CrossRef]
  11. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
    [CrossRef]
  12. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
    [CrossRef]
  13. E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
    [CrossRef]
  14. D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
    [CrossRef]
  15. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
    [CrossRef]
  16. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
    [CrossRef]
  17. L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
    [CrossRef]
  18. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
    [CrossRef]
  19. T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
    [CrossRef]
  20. Y. H. Chen, “Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials,” Opt. Express 17, 20333–20341 (2009).
    [CrossRef]
  21. Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
    [CrossRef]
  22. X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009).
    [CrossRef]
  23. Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
    [CrossRef]
  24. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
    [CrossRef]
  25. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
    [CrossRef]
  26. Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
    [CrossRef]
  27. Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
    [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  29. M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008).
    [CrossRef]
  30. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
    [CrossRef]
  31. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [CrossRef]
  32. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
    [CrossRef]
  33. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
    [CrossRef]
  34. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
    [CrossRef]
  35. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
    [CrossRef]
  36. S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
    [CrossRef]
  37. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [CrossRef]

2012 (2)

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

2011 (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

2010 (2)

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

2009 (4)

W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34, 2676–2678 (2009).
[CrossRef]

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Y. H. Chen, “Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials,” Opt. Express 17, 20333–20341 (2009).
[CrossRef]

X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009).
[CrossRef]

2008 (5)

M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008).
[CrossRef]

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008).
[CrossRef]

M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008).
[CrossRef]

2007 (3)

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
[CrossRef]

2006 (5)

Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

2005 (1)

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[CrossRef]

2004 (4)

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

2003 (3)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

2002 (3)

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002).
[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Abdullah, T.

M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008).
[CrossRef]

Ali, M. Z.

M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008).
[CrossRef]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Bartal, G.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Burgos, S. P.

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Chatterjee, R.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Chen, H.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

Chen, Y. G.

Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
[CrossRef]

Chen, Y. H.

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

Y. H. Chen, “Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials,” Opt. Express 17, 20333–20341 (2009).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Chen, Z. F.

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

Cheng, Q.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Cui, T. J.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Dai, Q. F.

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
[CrossRef]

de Dios-Leyva, M.

M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008).
[CrossRef]

Decoopman, T.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

Deng, X. H.

X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009).
[CrossRef]

Dong, J. W.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Eleftheriades, G. V.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Enoch, S.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Fang, Y. T.

Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
[CrossRef]

Fredkin, D. R.

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

Gonzalez-Vasquez, O. E.

M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008).
[CrossRef]

Gralak, B.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

Hache, A.

A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002).
[CrossRef]

Hangyo, M.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Hickmann, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

Hu, B. B.

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Huang, W. P.

Istrate, E.

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[CrossRef]

Iyer, A. K.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
[CrossRef]

Jiang, H. T.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kip, D.

C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Kocaman, S.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Kondo, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Kremer, P. C.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
[CrossRef]

Kwong, D. L.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

La, S.

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

Lee, P. F.

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Li, H. Q.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

Li, Y. W.

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
[CrossRef]

Lin, X. Q.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Liu, J. H.

Liu, N. H.

X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009).
[CrossRef]

Liu, R. P.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Liu, S. T.

Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
[CrossRef]

Liu, Y. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Liu, Z. W.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Maystre, D.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

McCormick, C. F.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

McMillan, J. F.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Miyamaru, F.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Nagashima, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Osgood, R. M.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Panoiu, N. C.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Poirier, L.

A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002).
[CrossRef]

Polman, A.

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Pun, E. Y. B.

Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Ron, A.

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Ruter, C. E.

C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008).
[CrossRef]

Sargent, E. H.

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[CrossRef]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Tayeb, G.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Waele, R. D.

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Wang, H. Z.

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
[CrossRef]

Wang, L. G.

L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

Wang, T. B.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

Wang, W. X.

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

Wang, X. G.

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Wang, Y.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Wong, C. W.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Wu, L. J.

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

Ye, F. W.

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Yin, C. P.

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

Yong, Z. H.

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

Yu, M. B.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Zhang, W. F.

Zhang, X.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

Zhang, Y.

Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
[CrossRef]

Zhang, Y. J.

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

Zhang, Y. W.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

Zhao, B.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Zhao, W.

Zhou, J.

Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
[CrossRef]

Zhou, J. F.

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

Zhu, S. Y.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

Zi, J.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

Appl. Phys. B Lasers Opt. (2)

Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007).
[CrossRef]

Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012).
[CrossRef]

Appl. Phys. Lett. (7)

Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006).
[CrossRef]

A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002).
[CrossRef]

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
[CrossRef]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003).
[CrossRef]

E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005).
[CrossRef]

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002).
[CrossRef]

J. Appl. Phys. (1)

Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010).
[CrossRef]

J. Phys. D (1)

X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009).
[CrossRef]

Nat. Mater. (1)

S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Opt. Commun. (1)

Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (3)

T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008).
[CrossRef]

Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012).
[CrossRef]

M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008).
[CrossRef]

Phys. Rev. A (1)

C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008).
[CrossRef]

Phys. Rev. B (3)

M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008).
[CrossRef]

L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).
[CrossRef]

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007).
[CrossRef]

Phys. Rev. E (1)

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004).
[CrossRef]

Phys. Rev. Lett. (5)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006).
[CrossRef]

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009).
[CrossRef]

Science (6)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[CrossRef]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic representation of the PC constituted by MNG materials and PIMs. The gray and white regions represent the MNG materials and PIMs, respectively.

Fig. 2.
Fig. 2.

(a) Photonic band structure as a function of the incident angle for an infinite MNG-PIM multilayered periodic structure. The white areas correspond to propagation bands and the gray areas are the forbidden bands. (b) Reflection phase shifts as functions of frequency at incident angle θ=60° for (AB)16 with dA=6mm, dB=12mm, and nB=4.

Fig. 3.
Fig. 3.

Electric field distributions inside structure (AB)16 at different frequencies: (a) ω=2.600GHz in the SNG gap; (b) ω=5.705GHz at the upper edge of the SNG gap; (c) ω=16.371GHz at the middle of the Bragg gap; (d) ω=18.214GHz at the upper edge of the Bragg gap. Layer A and B are respectively denoted by light gray and white areas.

Fig. 4.
Fig. 4.

Reflection phase difference ΔΦ as a function of frequency in structure (AB)16 in the SNG gap under incident angles of 30°, 45°, 60°, and 75°.

Fig. 5.
Fig. 5.

Reflection phase shift difference ΔΦ as a function of the incident angle in structure (AB)16 at ω=2.05GHz, 2.60 GHz, and 3.15 GHz. The inset shows the zoom in for θ near 75°.

Fig. 6.
Fig. 6.

Reflectance and reflection phase difference ΔΦ of structure (AB)16 as functions of frequency at angle of incidence θ=60° under the thickness ratio (a) and (b) δ=0.5, (c) and (d) δ=1.25, and (e) and (f) δ=2.

Fig. 7.
Fig. 7.

Dependence of the reflectance and reflection phase difference ΔΦ on the scale factor ρ at θ=60° in structure (AB)16. (a) and (b) ρ=0.5, (c) and (d) ρ=1.5, (e) and (f) ρ=2.5.

Fig. 8.
Fig. 8.

Dependence of the reflectance and ΔΦ on nB of structure (AB)16 at θ=60° with dA=6mm, dB=12mm, (a) and (b) nB=2, (c) and (d) nB=3, (e) and (f) nB=4.

Fig. 9.
Fig. 9.

(a) Reflectance and (b) the reflection phase shift ΔΦ as functions of frequency at angle of incidence θ=64.5° in structure (AB)16 with nB=1, dA=12mm, and dB=6mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

εA=ε1,μA=μ1ωmp2/ω2,
Mj(Δz,ω)=(cos(kzjΔz)iqjsin(kzjΔz)i/qjsin(kzjΔz)cos(kzjΔz)),
r(ω)=(x11x22)cosθ+(x12cos2θx21)(x11+x22)cosθ+(x12cos2θ+x21)=|r|eiΦ,
cosβz(dA+dB)=cos[kz(A)dA]cos[kz(B)dB]12(qBqA+qAqB)sin[kz(A)dA]sin[kz(B)dB],

Metrics