Abstract

A surface magnon-polariton can be excited by both p- and s-polarized light if at least one of the layers is a magnetic material. We present general expressions of the tangential wave vectors of s- and p-polarized light at an interface of two media. Analysis reveals additional new regimes of surface polariton resonances with magnetic materials for s- and p-polarized light. The tangential wave vectors are found to be equal in magnitude to the normal wave vectors at surface polariton resonances. The spatial distributions of the fields at resonant enhancement and the spectra of the tangential wave vectors are studied for different dielectric permittivities and magnetic permeabilities of the two media. If one of the media has dispersive dielectric function and permeability function, additional surface polariton resonance peaks appear for both s- and p polarizations. For a medium with a superconductor, the tangential component increases asymptotically at lower frequencies, providing subwavelength capability at the terahertz regime.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  2. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
    [CrossRef]
  3. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
    [CrossRef]
  4. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
    [CrossRef]
  5. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
    [CrossRef]
  6. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  9. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
    [CrossRef]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef]
  11. I. P. Radko, S. I. Bozhenyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
    [CrossRef]
  12. G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990).
    [CrossRef]
  13. M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007).
    [CrossRef]
  14. S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998).
    [CrossRef]
  15. J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
    [CrossRef]
  16. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
    [CrossRef]
  17. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [CrossRef]
  18. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
    [CrossRef]
  19. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
    [CrossRef]
  20. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
    [CrossRef]
  21. F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005).
    [CrossRef]
  22. G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
    [CrossRef]
  23. D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
    [CrossRef]
  24. R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
    [CrossRef]
  25. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
    [CrossRef]
  26. J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
    [CrossRef]
  27. E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
    [CrossRef]
  28. A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
    [CrossRef]
  29. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  30. M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
    [CrossRef]
  31. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
    [CrossRef]
  32. R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984).
    [CrossRef]
  33. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
    [CrossRef]
  34. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  35. See V. M. Agranovich and D. L. Mills, ed., Surface Polaritons : Electromagnetic Waves at Surfaces and Interfaces (North-Holland1982).
  36. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
  37. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
    [CrossRef]
  38. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
    [CrossRef]
  39. V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
    [CrossRef]
  40. J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
    [CrossRef]
  41. M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
    [CrossRef]
  42. C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
    [CrossRef]
  43. C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
    [CrossRef]
  44. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
    [CrossRef]
  45. T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
    [CrossRef]
  46. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
    [CrossRef]
  47. C. G. Ribbing, H. Högström, and A. Rung, “Studies of polaritonic gaps in photonic crystals,” Appl. Opt. 45, 1575–1582 (2006).
    [CrossRef]
  48. C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
    [CrossRef]
  49. T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North-Holland, 1981).

2009 (3)

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

2007 (5)

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

I. P. Radko, S. I. Bozhenyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[CrossRef]

2006 (7)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
[CrossRef]

C. G. Ribbing, H. Högström, and A. Rung, “Studies of polaritonic gaps in photonic crystals,” Appl. Opt. 45, 1575–1582 (2006).
[CrossRef]

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

2005 (3)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef]

F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005).
[CrossRef]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef]

2004 (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

2002 (1)

A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

2001 (2)

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

2000 (3)

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

1998 (1)

S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998).
[CrossRef]

1997 (2)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

1993 (1)

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

1990 (1)

G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990).
[CrossRef]

1987 (1)

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

1984 (1)

R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984).
[CrossRef]

1983 (1)

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

1982 (1)

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

1981 (1)

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
[CrossRef]

1980 (2)

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

1973 (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Arakawa, E. T.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
[CrossRef]

Arakelian, V. H.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

B-Abad, J.

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

Badenes, G.

G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Bagdassarian, L. A.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Boltasseva, A.

Bozhenyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

I. P. Radko, S. I. Bozhenyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[CrossRef]

Brewer, R.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Burstein, E.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Caill, A.

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

Caillé, A.

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

Camley, R. E.

R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984).
[CrossRef]

Cao, Y. W.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Capasso, F.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Carey, J. J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Cirac, J. I.

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

Cottam, M. G.

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Currie, M.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
[CrossRef]

Degiron, A.

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Diehl, L

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Diehl, L.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

Drezet, A.

A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Ebbesen, T. W.

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Edamura, T.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Ehlotzky, F.

S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998).
[CrossRef]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef]

Erni, Daniel

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

Evlyukhin, A. B.

Fainman, Y.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Farkas, G.

G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990).
[CrossRef]

Folman, R.

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

Fukui, M.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

Furuta, S.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

García-Vidal, F. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Genet, C.

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Gerber, G.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Govorov, A. O.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef]

Grote, R.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

Hartstein, A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Heitmann, D.

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Hernandez, P.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

Högström, H.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

Horak, P.

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

Huant, S.

A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
[CrossRef]

Inagaki, T.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
[CrossRef]

Intravaia, F.

F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005).
[CrossRef]

Japha, Y.

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

Jaroszynski, D. A.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Jin, R.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Kam, C. H.

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

Kan, H.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Kelly, K. L.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

Kobayashi, T.

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kotovi, N. A.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

Kroo, N.

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

Kupersztych, J.

M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007).
[CrossRef]

Lakhtakia, A.

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

Lambrecht, A.

F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005).
[CrossRef]

Lee, J.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

Lehmann, J.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Lim, T. K.

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Maradudin, A. A.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Marchand, M.

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

Matsuura, J.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

Merschdorf, M.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Mills, D. L.

R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984).
[CrossRef]

Mirkin, C. A.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Nabet, B.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Ooi, C. H. R.

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

Petrov, D.

G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Pfeiffer, W.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Pflügl, C.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Polo, J. A.

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

Przybilla, F.

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

Quidant, G. R.

G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

Radko, I. P.

Raynaud, M.

M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007).
[CrossRef]

Ribbing, C. G.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Rokitski, R.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef]

Rosenblit, M.

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

Rung, A.

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

Schatz, G. C.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Schulz, C.

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef]

Shackleford, J. A.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

Shu, C.

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

Simonian, S. G.

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

Sipe, J. E.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
[CrossRef]

So, V. C. Y.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Spanier, J. E.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

Stegeman, G. I.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

Szentirmay, Z.

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

Tada, O.

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

Takahara, J.

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Tetz, K. A.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef]

Thibaudeau, C.

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

Thon, A.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Tilley, D. R.

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).

Toth, C.

G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990).
[CrossRef]

Turner, C. W.

T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North-Holland, 1981).

van Duzer, T.

T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North-Holland, 1981).

Varro, S.

S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998).
[CrossRef]

Voll, S.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

Wallis, R. F.

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Wang, Q. J.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Williams, M. W.

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
[CrossRef]

Woehl, J. C.

A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Wynne, K.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Yeung, T. C. A.

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

Yu, N.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Zawadzka, J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Zheng, J. G.

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009).
[CrossRef]

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999).
[CrossRef]

J. Magn. Magn. Mater. (1)

V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997).
[CrossRef]

J. Mod. Opt. (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006).
[CrossRef]

J. Phys. C Solid State Phys. (1)

A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973).
[CrossRef]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007).
[CrossRef]

Nat. Photon. (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Nature Phys. (1)

J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006).
[CrossRef]

Opt. Express (1)

Opt. Photon. News (1)

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004).
[CrossRef]

Phys. Lett. A (1)

R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000).
[CrossRef]

Phys. Rev. A (3)

S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998).
[CrossRef]

M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006).
[CrossRef]

G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990).
[CrossRef]

Phys. Rev. B (7)

M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007).
[CrossRef]

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980).
[CrossRef]

R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987).
[CrossRef]

T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981).
[CrossRef]

C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000).
[CrossRef]

Phys. Rev. E (1)

A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Phys. Rev. Lett. (11)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef]

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[CrossRef]

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000).
[CrossRef]

F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005).
[CrossRef]

G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef]

Proc. R. Soc. A (1)

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001).
[CrossRef]

Solid State Commun. (4)

J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983).
[CrossRef]

M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980).
[CrossRef]

C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982).
[CrossRef]

C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993).
[CrossRef]

Other (3)

T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North-Holland, 1981).

See V. M. Agranovich and D. L. Mills, ed., Surface Polaritons : Electromagnetic Waves at Surfaces and Interfaces (North-Holland1982).

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Quadrants showing regimes of enhanced tangential wave vectors kx of surface polaritons propagating between medium 1 and medium 2 with permittivities εi and permeabilities μi for s-polarized light and p-polarized light. (a) Conventional scenario of plasmonic enhancement and its magnetic analog (indicated by open/filled dots). (b) New resonant regimes due to both electric and magnetic properties. The enhancement regions are indicated by two solid (red) lines and two dashed (green) lines slightly less and more than 1 and 1.

Fig. 2.
Fig. 2.

Tangential field distributions for s-polarized light (normalized by amplitude E0). (a) Ez field with rapid oscillations (corresponding to an enhanced tangential wave vector) and (b) Ex field with normal oscillations. Here, μ1=1 and μ2=1.008, with ε1=5 and ε2=1, corresponding to the second quadrant in the diagram in Fig. 1(b). The normalization factor is λ=2πc/ω, where ω=8×1013s1. Note that the Ez field is continuous along y=0 but the Ex field need not be continuous (the scale is 10 times larger).

Fig. 3.
Fig. 3.

Tangential field distributions for p-polarized light. (a) Ez field with normal oscillations and (b) Ex field with rapid oscillations. Here, ε1=1 and ε2=1.009, with μ1=4 and μ2=3, corresponding to the fourth quadrant in the diagram in Fig. 1.

Fig. 4.
Fig. 4.

Positive refractive index case: (a) real parts of ε2(ω) [in Eq. (11)], μ2=5 and refractive index n2(ω)=ε2(ω)μ2. Wave vector dispersions for s-polarized and p-polarized light in two situations: ε1 and μ1 with (b) the same sign and (c) opposite signs. For ε2(ω), we use parameters for ionic (BeO) crystal [47]: ωε=2π2.1036×1013s1, γε=2π3.6512×1011s1, and ω~ε=2.8532×1014s1.

Fig. 5.
Fig. 5.

Negative refractive index case: (a) real parts of ε2(ω), μ2(ω), and n2(ω)=ε2(ω)μ2(ω). Wave vector dispersions for s-polarized and p-polarized light in two situations: ε1 and μ1 with (b) the same sign and (c) opposite signs. The parameters for ε2(ω) are the same as Fig. 4. For μ2(ω), the magnetic resonance is characterized by ωμ=0.9ωε, ω~μ=1.1ω~ε, and γμ=γε.

Fig. 6.
Fig. 6.

(a) Dispersive superconductor with ε2(ω) and dispersive magnetic material with μ2(ω) (as in Fig. 5) and the resulting n2(ω)=ε2(ω)μ2(ω) with negative refractive index region. (b) The enhancement λ/λefs,p of surface polaritons for s-polarized and p-polarized light. Here, Eq. (12) is used for ε2(ω), and ω=2πc/λ and ks,p=2π/λefs,p. Other parameters are ε1=1 and μ1=1.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ej=[EjpkjypkjeiΦjp,EjpkxpkjeiΦjp,Ejsei(Φjs+ϕ)],
kxs=ωc(ε1μ2μ1ε2μ2μ1)μ1μ2μ1+μ2,
kxp=ωc(μ1ε2ε1μ2ε2ε1)ε1ε2ε1+ε2,
kjys=ωcμjμ2ε2ε1μ1(μ2μ1)(μ1+μ2),
kjyp=ωcεjμ2ε2ε1μ1(ε2ε1)(ε1+ε2),
kxsωcμ2ε1ε22δmik1ysik2ys.
kxsωcμ2ε1+ε22δm+ik2ysik1ys.
kxpωcε2μ1μ22δeik1ypik2yp,
kxpωcε2μ1+μ22δe+ik2ypik1yp.
kxsωc(ε1iμ2iμ1iε2iμ2iμ1i)μ2iμ1iμ2i+μ1i.
α(ω)=1+ω~α2ωα2ω2iγαω,
εs(ω)=1ωp2[fnω(ω+iγ)+fsω2],

Metrics