Abstract

A study of the surface modification induced by single femtosecond laser pulses in phosphate glass has revealed surface swelling at fluences just below the ablation threshold. This behavior is different from that observed in other dielectric materials. Optical micrographs obtained with monochromatic light show a pattern of Newton rings within the swollen region whose number scales inversely with the illumination wavelength, acting as a micro Fabry–Perot etalon. The swollen surface layer has lower refractive index than the bulk glass and can reach a maximum thickness of 820 nm. We relate these findings to results obtained during subsurface waveguide writing inside phosphate glass, which also show a refractive index decrease at energies near threshold for waveguide fabrication. We have identified low density free-electron plasma to be the trigger of the refractive index change.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. B. Bradley, and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
    [CrossRef]
  2. K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).
  3. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  4. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
    [CrossRef]
  5. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromaching: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics(Springer, 2012).
  6. A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).
  7. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
    [CrossRef]
  8. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).
  9. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
    [CrossRef]
  10. F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
    [CrossRef]
  11. A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
    [CrossRef]
  12. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
    [CrossRef]
  13. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).
  14. A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
    [CrossRef]
  15. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196 (1982).
    [CrossRef]
  16. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
    [CrossRef]
  17. R. Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
    [CrossRef]
  18. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
    [CrossRef]
  19. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [CrossRef]

2011 (3)

J. D. B. Bradley, and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[CrossRef]

2010 (4)

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

2009 (2)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

2008 (1)

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

2007 (2)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

2005 (1)

2004 (1)

F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
[CrossRef]

1982 (1)

1970 (1)

R. Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

Ams, M.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

Arai, A.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef]

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Baersch, N.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Bauer, T.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Berdejo, V.

Bonse, J.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Bovatsek, J.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley, and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Bressel, L.

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

Buividas, R.

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromaching: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics(Springer, 2012).

Chichkov, B. N.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

de Ligny, D.

Dekker, P.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

DiCarolis, S.

F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
[CrossRef]

Eaton, S.

Ehrentraut, L.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Fernández, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Ferrer, A.

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Fletcher, L. B.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

Galvan-Sosa, M.

Gawelda, W.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Herman, P.

Hirao, K.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).

Jaque, D.

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

Juodkazis, S.

Kamlage, G.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Klug, U.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Koch, J.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Korte, F.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Krol, D. M.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Little, D. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

Liu, J. M.

Lum, P.

F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
[CrossRef]

Marshall, G. D.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

Martinez, V.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

Mitsuyu, T.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).

Mizeikis, V.

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromaching: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics(Springer, 2012).

Ostendorf, A.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Patel, F.

F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
[CrossRef]

Pollnau, M.

J. D. B. Bradley, and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Puerto, D.

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Qiu, J.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromaching: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics(Springer, 2012).

Rebolledo, M. A.

Reichman, W. B.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

Ruiz de la Cruz, A.

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

Serbin, J.

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

Shah, L.

Si, J.

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).

Siegel, J.

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and Y. J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27, 1065–1076 (2010).

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Solis, J.

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27, 1688–1692 (2010).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

Solis, Y. J.

Sonneville, C.

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Vallés, J. A.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

Witcher, J. J.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

Withford, M. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

Yoshino, F.

Zhang, H.

Appl. Phys. Lett. (2)

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz de la Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Patel, S. DiCarolis, and P. Lum, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16, 2607–2609 (2004).
[CrossRef]

J. Appl. Phys. (3)

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106, 083107 (2009).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys. 108, 033110 (2010).

A. Ferrer, D. Jaque, J. Siegel, A. Ruiz de la Cruz, and J. Solis, “Origin of the refractive index modification of femtosecond laser processed doped phosphate glass,” J. Appl. Phys. 109, 093107 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

R. Brückner, “Properties and structure of vitreous silica I,” J. Non-Cryst. Solids 5, 123–175 (1970).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses (Review article),” J. Opt. A Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447 (2007).
[CrossRef]

Laser Photon. Rev. (1)

J. D. B. Bradley, and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 1–4 (2010).
[CrossRef]

Other (3)

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromaching: Photonic and Microfluidic Devices in Transparent Materials, Vol. 123 of Topics in Applied Physics(Springer, 2012).

A. Ostendorf, F. Korte, G. Kamlage, U. Klug, J. Koch, J. Serbin, N. Baersch, T. Bauer, and B. N. Chichkov, “Applications of femtosecond lasers in 3D micromachining,” in 3D Laser Microfabrication Principles and Applications, H. Misawa and S. Juodkazis, eds. (Wiley-VCH, 2006).

K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, Active Glass for Photonic Applications: Photoinduced Structures and Their Application (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Topography profiles along the long axis of single pulse irradiated regions in phosphate glass at three different laser fluences (see labels). (b)–(d) Optical micrographs of the laser-exposed regions shown in (a). The field of view is in all cases 46×39μm2.

Fig. 2.
Fig. 2.

Two optical micrographs show the same region, irradiated by a single pulse at 3.9J/cm2, illuminated with 460 nm (a) and 800 nm (b). The field of view is in both cases 40×27μm2. On top, the corresponding normalized reflectivity profiles are shown (c), (d). The lower graphs show the calculated reflectivity modulation for a system with a top layer of reduced refractive index as a function of its thickness for 460 nm (e) and 800 nm light (f), using Δn/n460nm0.008 and Δn/n800nm0.011, respectively.

Fig. 3.
Fig. 3.

Comparison of results obtained in phosphate glass upon surface irradiation (top row) and bulk irradiation (bottom row). Top row (field of view 31×26μm2): Single pulse irradiation at 3.55J/cm2. (a) Transient free-electron plasma at a delay of 1 ps as measured by fs microscopy (see text). (b) Appearance as measured by optical microscopy using 460 nm light, featuring Newton rings. (c) Topography map in false color with units given in nm. Bottom row (field of view 80×80μm2): Irradiation at 1 kHz and sample scanning at 100μm/s, 16.0J/cm2. The laser is incident from the left. (d) Time-integrated free electron plasma as measured by plasma emission microscopy (in logarithmic intensity scale). (e) Appearance as measured by microscopy, featuring a lowered transmission. (f) Spectral shift of the Er+ emission line at 533 nm as measured by confocal microfluorescence imaging (taken and adapted from [16]). The units of the colour bar are cm1.

Metrics