Abstract

The method of transformation optics (TO) has recently been applied to the problem of manipulating the flow of surface plasmon polaritons (SPPs) along metal–dielectric interfaces. Although it allows one to theoretically control the flow in any manner desired, it usually leads to material properties not found in nature, thus making the realization of theoretical potentialities impractical. Therefore, artificial materials (called metamaterials), with both inhomogeneous and anisotropic electromagnetic response, are normally required to create the optical space designed with the TO method. In this paper, by utilizing linear coordinate transformations, we demonstrate that it is possible to maneuver the flow of SPPs in various ways within the realm of homogeneous metamaterials. Specifically, we describe how to construct a plasmon guider for a particular nonflat surface, an invisibility cloak that renders objects undetectable via SPPs, and a concentrator of the SPPs’ energy. The functionalities of these devices are visualized, and their performance is investigated, using finite-element simulations. The results presented show that the method of linear transformations is a simple, viable, and effective approach to the design of feasible plasmonic devices based on homogenous materials.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Electromagnetic Concentrators with Reduced Material Parameters Based on Coordinate Transformation

Wei Wang, Lan Lin, Junxian Ma, Changtao Wang, Jianhua Cui, Chunlei Du, and Xiangang Luo
Opt. Express 16(15) 11431-11437 (2008)

Ideal and nonideal invisibility cloaks

Nina A. Zharova, Ilya V. Shadrivov, Alexander A. Zharov, and Yuri S. Kivshar
Opt. Express 16(26) 21369-21374 (2008)

A near-perfect invisibility cloak constructed with homogeneous materials

Wei Li, Jianguo Guan, Zhigang Sun, Wei Wang, and Qingjie Zhang
Opt. Express 17(26) 23410-23416 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription