Abstract

Multibound solitons generated in an active mode-locked fiber ring resonator can be considered to offer some significant applications in the coding for optical packet transmission. Optical phase modulators (PMs) incorporated in such fiber ring resonators are fabricated in uniaxial birefringent crystal substrate and thus influence both polarized modes of a coupled linearly polarized mode from a weakly guiding fiber forming the ring. Thus there are two polarized rings in such a structure of the active mode-locked fiber ring resonators. They are coupled and interact with each other in the generation of multibound solitons. This paper thus studies the influence of two types of electrodes for phase modulation, lumped and traveling wave, in such birefringent fiber active ring resonators, and hence the transitional formation of multibound solitons. It is shown that there exist comblike spectral components in the ring cavity due to the birefringence property of the PM. Furthermore, the narrow free spectral range of the ring resonator limits the pulse shortening and hence the formation of the multibinding of solitons.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Ring Lasers (CRC Press, 2010).
  2. W. Sohler, “Integrated optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
    [CrossRef]
  3. L. N. Binh, Photonic Signal Processing: Techniques and Applications (CRC Press, 2008).
  4. G. S. Lifante, Integrated Photonics Fundamentals (Wiley, 2003).
  5. W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
    [CrossRef]
  6. K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
    [CrossRef]
  7. K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
    [CrossRef]
  8. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
    [CrossRef]
  9. L. N. Binh, Guided Wave Photonics (CRC Press, 2011).
  10. R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
    [CrossRef]
  11. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21, 2358 (2003).
    [CrossRef]
  12. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [CrossRef]
  13. E. Chan and R. A. Minasian, “A new optical phase modulator dynamic response measurement technique,” J. Lightwave Technol. 26, 2882–2888 (2008).
    [CrossRef]
  14. W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
    [CrossRef]
  15. E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005).
    [CrossRef]
  16. G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, “Tunable birefringent filters—optimal iterative design,” Opt. Express 10, 1534–1541 (2002).
  17. G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988).
    [CrossRef]
  18. S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998).
    [CrossRef]
  19. Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
    [CrossRef]
  20. D. Lingze, M. Dagenais, and J. Goldhar, “Smoothly wavelength-tunable picosecond pulse generation using a harmonically mode-locked fiber ring laser,” J. Lightwave Technol. 21, 930–937 (2003).
    [CrossRef]
  21. T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.
  22. M. Bolshtyansky, “Spectral hole burning in erbium-doped fiber amplifiers,” J. Lightwave Technol. 21, 1032 (2003).
    [CrossRef]
  23. D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.
  24. N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009).
    [CrossRef]
  25. M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
    [CrossRef]
  26. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasi-lossless and lossy optical fiber spans,” J. Opt. Soc. Am. B 24, 1254–1261 (2007).
    [CrossRef]

2009 (1)

N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009).
[CrossRef]

2008 (1)

2007 (1)

2005 (1)

E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005).
[CrossRef]

2003 (3)

2002 (2)

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, “Tunable birefringent filters—optimal iterative design,” Opt. Express 10, 1534–1541 (2002).

1998 (2)

S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998).
[CrossRef]

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

1995 (1)

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

1989 (3)

W. Sohler, “Integrated optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

1988 (1)

G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988).
[CrossRef]

1987 (1)

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

1982 (2)

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

Abbott, S.

D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.

Aizawa, T.

T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.

Alferness, R.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Anderson, D.

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

Binh, L. N.

N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009).
[CrossRef]

L. N. Binh, Guided Wave Photonics (CRC Press, 2011).

L. N. Binh, Photonic Signal Processing: Techniques and Applications (CRC Press, 2008).

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Ring Lasers (CRC Press, 2010).

Bolshtyansky, M.

Bonek, E.

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

Buhl, L.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Chan, E.

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005).
[CrossRef]

Chan, K. T.

S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998).
[CrossRef]

Chen, J. H.

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

Choa, F. S.

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

Dagenais, M.

Delavaux, J.-M.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Derevyanko, S. A.

Desaix, M.

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

Eidinger, E.

Goldhar, J.

Golovchenko, E.

D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.

Helczynski, L.

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

Jumonji, H.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

Kawano, K.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

Kitoh, T.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

Kovsh, D.

D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.

Leeb, W. R.

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

Li, S. P.

S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998).
[CrossRef]

Lifante, G. S.

G. S. Lifante, Integrated Photonics Fundamentals (Wiley, 2003).

Lingze, D.

Lisak, M.

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

Marom, E.

Mendlovic, D.

Minasian, R. A.

E. Chan and R. A. Minasian, “A new optical phase modulator dynamic response measurement technique,” J. Lightwave Technol. 26, 2882–2888 (2008).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005).
[CrossRef]

Mitomi, O.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

Miyazawa, H.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Ngo, N. Q.

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Ring Lasers (CRC Press, 2010).

Nguyen, N. D.

N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009).
[CrossRef]

Noguchi, K.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Nozawa, T.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

Pilipetskii, A.

D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.

Prilepsky, J. E.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Sakai, T.

T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.

Scholtz, A. L.

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Sellers, G. J.

G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988).
[CrossRef]

Shabtay, G.

Shi, Y.

Shu, C.

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

Smith, R.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Sohler, W.

W. Sohler, “Integrated optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Sriram, S.

G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988).
[CrossRef]

Tench, R.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Turitsyn, S. K.

Tzeng, L.

R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987).
[CrossRef]

Wada, A.

T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.

Willner, A. E.

Yamauchi, R.

T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.

Yan, L.

Yanagibashi, M.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

Zalevsky, Z.

Zhao, Y.

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998).
[CrossRef]

Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998).
[CrossRef]

Electron. Lett. (1)

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009).
[CrossRef]

Opt. Express (1)

Opt. News (1)

G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988).
[CrossRef]

Phys. Rev. E (1)

M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002).
[CrossRef]

Thin Solid Films (1)

W. Sohler, “Integrated optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989).
[CrossRef]

Other (6)

L. N. Binh, Photonic Signal Processing: Techniques and Applications (CRC Press, 2008).

G. S. Lifante, Integrated Photonics Fundamentals (Wiley, 2003).

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Ring Lasers (CRC Press, 2010).

L. N. Binh, Guided Wave Photonics (CRC Press, 2011).

T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.

D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1.

Experimental setup of the actively FM mode-locked fiber laser.

Fig. 2.
Fig. 2.

Experimental setup of the actively mode-locked fiber laser using phase-modulated Sagnac loop (PMSL). (a) Schematic diagram of whole fiber ring laser. (b) Detailed diagram of the PMSL (PC, polarization controller).

Fig. 3.
Fig. 3.

Geometries of LiNbO3 PMs—(a) X-cut and positions of electrodes and (b) Z-cut and positions of electrodes—for effective interaction.

Fig. 4.
Fig. 4.

Arrangement of electrodes and optical waveguides for effective EO interactions of optical PM: (a) lumped-electrode type and (b) traveling-wave electrode type.

Fig. 5.
Fig. 5.

Variation of (a) normalized intensity of the carrier and sidemodes, and (b) ratio R1,0 with respect to the phase modulation index m.

Fig. 6.
Fig. 6.

OSA-based Vπ measurement setup.

Fig. 7.
Fig. 7.

Optical spectra of the signal modulated by PMs: (a) PM-315P and (b) Mach-40-27 at the same RF driving level of 19 dBm. (Note the different scales.).

Fig. 8.
Fig. 8.

Phase modulation index calculated from measured relative intensity ratio R1,0 at 1 GHz as a function of RF driving voltage for two models: (a) PM-315P and (b) Mach-40-27.

Fig. 9.
Fig. 9.

Measurement setup of the frequency response of the optical PMs.

Fig. 10.
Fig. 10.

Measured frequency notch response of the PMs: (a) lumped-type PM-315P and (b) traveling-wave-type Mach-40-27 within measured frequency range up to 3 GHz.

Fig. 11.
Fig. 11.

Comblike optical spectra in two setups of the fiber ring laser using (a) model PM-315P and (b) model Mach-40-27, respectively.

Fig. 12.
Fig. 12.

(a) Mode-locked wavelength versus modulation frequency and (b) measured characteristics of mode-locked pulse over the tuning range.

Fig. 13.
Fig. 13.

Example of (a) the time trace and (b) RF spectrum of the mode-locked pulse sequence at one of the tuned wavelengths.

Fig. 14.
Fig. 14.

(a) Optical spectrum and (b) time trace of the output when modulation frequency fm is tuned by ±δfm/2.

Fig. 15.
Fig. 15.

(a) Optical spectrum and (b) time trace of mode-locked pulse when the wavelength is tuned at the edge of the gain spectrum.

Fig. 16.
Fig. 16.

Mode-locked state generating a two-hump pulse in the cavity using the PM Mach-40-27. (a) Single pulse trace and (b) pulse train trace.

Fig. 17.
Fig. 17.

Switching from the triple-bound soliton into the dual-bound soliton after an adjustment of the PC. (a) Spectrum of triple-bound soliton. (b) Spectrum of dual-bound soliton with an adjacent wavelength in FM mode.

Fig. 18.
Fig. 18.

(a) Experimentally measured variation of threshold splitting power with the phase modulation index of the bound soliton states. (b) Simulated variation of the peak power in decibels of the triple-bound state with the phase modulation index.

Fig. 19.
Fig. 19.

(a) and (b) Simulated evolution of the triple-soliton bound state at operation points A and B, respectively, in Fig. 18(b).

Fig. 20.
Fig. 20.

Splitting of multibound solitons: (a) dual-bound soliton, (b) triple-bound soliton, (c) quadruple-bound soliton, and (d) sextuple-bound soliton, into lower-order bound solitons.

Fig. 21.
Fig. 21.

Time traces shows the variation of time separation between two solitons split from dual-bound soliton versus the change in RF input power: (a) 7 dBm, (b) 6 dBm, (c) 5 dBm, (d) 4 dBm, (e) 3 dBm, and (f) 2.5 dBm.

Fig. 22.
Fig. 22.

Correlation between the temporal spacing between two groups of bound solitons and the second-harmonic RF power.

Tables (1)

Tables Icon

Table 1. Pulse Characteristics at Tuned Wavelengths of the FM Mode-Locked Laser Using the Modulator PM-315P

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δφ=πVVπ=πLλreffneff3VdΓ,
f3dB=1πRC.
f3dB=1.4c[L(nonm)],
Eo(ω)=Eiexp(jω0t)k=(j)kJk(m)exp(jkωmt),
Io(ω0+kωm)=IiJk2(m),
R1,0(m)=Io(ω0±ωm)Io(ω0)=J12(m)J02(m),
H(f)=12lPM2K0(f)R[(1+η2(f))2η(f)cosϕ(f)]R0,
η(f)=sin(2πfτL)2πfτL.
ϕ(f)=2πfτ,τ=1FSRnotch=ΔLc/n,
fk=k2τLwithk=1,2,
T=Γgcos2(Δϕ/2),
Δϕ=2πlΔneffλ,
δλ=λ2/lΔneff.
δfm=fm2DLcavδλm,

Metrics