Abstract

Random matrix theory is used to model a two-level quantum system driven by a laser and coupled to a reservoir with N degrees of freedom in both Markovian and non-Markovian regimes. Decoherence is naturally included in this model. The effect of reservoir dimension and coupling strength between the system and reservoir is explored.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
    [CrossRef]
  2. C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).
  3. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
    [CrossRef]
  4. A. A. Budini, “Random Lindblad equations from complex environments,” Phys. Rev. E 72, 056106 (2005).
    [CrossRef]
  5. X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
    [CrossRef]
  6. M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
    [CrossRef]
  7. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
    [CrossRef]
  8. J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001).
    [CrossRef] [PubMed]
  9. F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009).
    [CrossRef] [PubMed]
  10. C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
    [CrossRef]
  11. M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
    [CrossRef]
  12. H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1996).
  13. G. J. Milburn and D. F. Walls, Quantum Optics (Springer, 1994).
  14. W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
    [CrossRef]
  15. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
    [CrossRef] [PubMed]
  16. R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
    [CrossRef]
  17. K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007).
    [CrossRef]
  18. B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
    [CrossRef]
  19. F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
    [CrossRef]
  20. S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001).
    [CrossRef]
  21. H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
    [CrossRef]
  22. H.-P. Breuer, “Genuine quantum trajectories for non-Markovian processes,” Phys. Rev. A 70, 012106 (2004).
    [CrossRef]
  23. J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002).
    [CrossRef] [PubMed]
  24. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
    [CrossRef] [PubMed]
  25. J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
    [CrossRef]

2011 (1)

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

2009 (3)

M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
[CrossRef]

F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009).
[CrossRef] [PubMed]

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

2008 (4)

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
[CrossRef]

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

2007 (2)

K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007).
[CrossRef]

C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
[CrossRef]

2005 (2)

A. A. Budini, “Random Lindblad equations from complex environments,” Phys. Rev. E 72, 056106 (2005).
[CrossRef]

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

2004 (1)

H.-P. Breuer, “Genuine quantum trajectories for non-Markovian processes,” Phys. Rev. A 70, 012106 (2004).
[CrossRef]

2002 (1)

J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001).
[CrossRef]

J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001).
[CrossRef] [PubMed]

1999 (2)

W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
[CrossRef]

H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
[CrossRef]

1991 (1)

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[CrossRef]

1981 (1)

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

1977 (1)

B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[CrossRef]

1976 (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

Bonifacio, R.

S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001).
[CrossRef]

Breuer, H.-P.

H.-P. Breuer, “Genuine quantum trajectories for non-Markovian processes,” Phys. Rev. A 70, 012106 (2004).
[CrossRef]

H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
[CrossRef]

Brody, T. A.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Brumer, P.

J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001).
[CrossRef] [PubMed]

Budini, A. A.

A. A. Budini, “Random Lindblad equations from complex environments,” Phys. Rev. E 72, 056106 (2005).
[CrossRef]

Carmichael, H. J.

H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1996).

Diósi, L.

W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
[CrossRef]

Dowling, J. P.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Flores, J.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Florescu, M.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Franchini, F.

F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009).
[CrossRef] [PubMed]

French, J. B.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Genkin, M.

M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
[CrossRef]

Gisin, N.

W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
[CrossRef]

Giulini, D. J. W.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Goan, H.-S.

K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007).
[CrossRef]

Gong, J.

J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001).
[CrossRef] [PubMed]

Gorin, T.

C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
[CrossRef]

Grabert, H.

J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002).
[CrossRef] [PubMed]

Härkönen, K.

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

Huang, X. L.

X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
[CrossRef]

Joos, E.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Kapale, K. T.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Kappler, B.

H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
[CrossRef]

Kiefer, C.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Kravtsov, V. E.

F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009).
[CrossRef] [PubMed]

Kupsch, J.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Lee, H.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Leonhardt, R.

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

Lindblad, G.

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

Lindroth, E.

M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
[CrossRef]

Liu, K.-L.

K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007).
[CrossRef]

Mancini, S.

S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001).
[CrossRef]

Maniscalco, S.

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

Mello, P. A.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Milburn, G. J.

G. J. Milburn and D. F. Walls, Quantum Optics (Springer, 1994).

Misra, B.

B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[CrossRef]

Olivares, S.

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

Pandey, A.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Paris, M. A.

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

Parkins, S.

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

Petruccione, F.

H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
[CrossRef]

Piilo, J.

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

Pineda, C.

C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
[CrossRef]

Sadgrove, M.

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

Seligman, T. H.

C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
[CrossRef]

Spedalieri, F. M.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Stamatescu, I.-O.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Stockburger, J. T.

J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002).
[CrossRef] [PubMed]

Strunz, W. T.

W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
[CrossRef]

Sudarshan, E. C. G.

B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[CrossRef]

Sun, H. Y.

X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
[CrossRef]

Suominen, K.-A.

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

Vasile, R.

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

Walls, D. F.

G. J. Milburn and D. F. Walls, Quantum Optics (Springer, 1994).

Waltersson, E.

M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
[CrossRef]

Wimberger, S.

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

Wong, S. S. M.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Yi, X. X.

X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
[CrossRef]

Yurtsever, U.

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Zeh, H. D.

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

Zurek, W. H.

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[CrossRef]

Commun. Math. Phys. (1)

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

J. Math. Phys. (1)

B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[CrossRef]

New J. Phys. (1)

C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007).
[CrossRef]

Opt. Commun. (1)

F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005).
[CrossRef]

Phys. Rev. A (6)

S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001).
[CrossRef]

H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999).
[CrossRef]

H.-P. Breuer, “Genuine quantum trajectories for non-Markovian processes,” Phys. Rev. A 70, 012106 (2004).
[CrossRef]

J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009).
[CrossRef]

R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011).
[CrossRef]

K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007).
[CrossRef]

Phys. Rev. B (1)

M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009).
[CrossRef]

Phys. Rev. E (3)

A. A. Budini, “Random Lindblad equations from complex environments,” Phys. Rev. E 72, 056106 (2005).
[CrossRef]

X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008).
[CrossRef]

M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999).
[CrossRef]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001).
[CrossRef] [PubMed]

F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009).
[CrossRef] [PubMed]

J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002).
[CrossRef] [PubMed]

J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[CrossRef]

Rev. Mod. Phys. (1)

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981).
[CrossRef]

Other (3)

C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).

H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1996).

G. J. Milburn and D. F. Walls, Quantum Optics (Springer, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plot of the excited-state population versus time from the random matrix model (the oscillatory line with randomness) is on the bottom plot of the figure. The dots that overlap the oscillatory line represent the excited-state population versus time as found using the master equation approach. The plot of the system entropy is shown on the bottom plot as a line starting at zero, and increasing to a steady-state value of 0.9. The top plot shows the ratio between the system large and small eigenvalues versus time in units of 1 / γ starting at ∞ and decaying to 0.7. The parameters for all the plots are E Ω = 1 , E r = 1 , E s r = 0.15 , N = 12 . All of the plot lines are an average of the results of 30 simulations.

Fig. 2
Fig. 2

Plot of steady-state system entropy versus reservoir dimension size N. The parameters are E Ω = 1 , E r = 1 , E s r = 0.15 .

Fig. 3
Fig. 3

Plot of the time in units of 1 / γ needed to reach 90% of the steady-state value of the entropy versus dimension N of the reservoir. The parameters used in the plot are E Ω = 1 , E r = 1 , and E s r = 0.15 .

Fig. 4
Fig. 4

Plot of the excited-state population versus time in units of 1 / γ for different coupling strengths. From bottom to top, the coupling strengths are E s r = 0.15 , 10, 30, 50.

Fig. 5
Fig. 5

Plot of the system excited-state population variance after reaching the steady state versus the number of simulations for a reservoir dimension of 12. The parameters used in the plot are Ω s = 1 , E r = 1 , E s r = 0.15 , N = 12 .

Fig. 6
Fig. 6

Plot of the system steady-state population variance after averaging 10 runs versus the reservoir dimension N. The mean steady-state value is around 0.5. The parameters used in the plot are Ω s = 1 , E r = 1 , E s r = 0.15 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H = H s I r + I s H r + H I ,
H s = E Ω ( | e g | + | g e | ) .
H r = E r × R .
H I = E s r ( H e | e g | + H g | g e | ) .
| ψ 0 = | ψ s 0 | ψ r 0 .
ρ ˙ = i [ H , ρ ] + γ D [ | e ( g | ] .

Metrics