A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

C.-S. Deng, H. Xu, and L. Deych, “Effect of size disorder on the optical transport in chains of coupled microspherical resonators,” Opt. Express 19, 6923–6937 (2011).

[CrossRef]
[PubMed]

C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, “Synthesis of structured partially spatially coherent beams,” Opt. Lett. 36, 1638–1640 (2011).

[CrossRef]
[PubMed]

J. Sancho-Parramón, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).

[CrossRef]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34, 3541–3543 (2009).

[CrossRef]
[PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).

[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).

[CrossRef]

E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007).

[CrossRef]

V. N. Astratov and S. P. Ashili, “Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres,” Opt. Express 15, 17351–17361 (2007).

[CrossRef]
[PubMed]

G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Ya. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles” Opt. Express 15, 17380–17391 (2007).

[CrossRef]
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006).

[CrossRef]

T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt. 45, 5686–5692 (2006).

[CrossRef]
[PubMed]

J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005).

[CrossRef]
[PubMed]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005).

[CrossRef]
[PubMed]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005).

[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

V. N. AstratovJ. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004).

[CrossRef]

Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).

[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896–5901(2004).

[CrossRef]
[PubMed]

C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204(2003).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999).

[CrossRef]

C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998).

[CrossRef]

B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126(1998).

[CrossRef]

R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995).

[CrossRef]

C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994).

[CrossRef]

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980).

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part 3 94, 65–68(1947).

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005).

[CrossRef]
[PubMed]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).

[CrossRef]
[PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004).

[CrossRef]

V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol. 2.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol. 2.

C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998).

[CrossRef]

R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995).

[CrossRef]

C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994).

[CrossRef]

C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004).

[CrossRef]

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980).

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126(1998).

[CrossRef]

B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126(1998).

[CrossRef]

V. N. AstratovJ. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005).

[CrossRef]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004).

[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999).

[CrossRef]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part 3 94, 65–68(1947).

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” (2007) arXiv:cond-mat/0701332v1 [cond-mat.mtrl-sci].

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005).

[CrossRef]
[PubMed]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).

[CrossRef]
[PubMed]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204(2003).

[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005).

[CrossRef]
[PubMed]

D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill, 1990), Chap. 8.

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998).

[CrossRef]

C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204(2003).

[CrossRef]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).

[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” (2007) arXiv:cond-mat/0701332v1 [cond-mat.mtrl-sci].

V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol. 2.

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol. 2.

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005).

[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).

[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).

[CrossRef]

E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007).

[CrossRef]

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007).

[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896–5901(2004).

[CrossRef]
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999).

[CrossRef]

Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).

[CrossRef]

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980).

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005).

[CrossRef]
[PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005).

[CrossRef]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).

[CrossRef]
[PubMed]

T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt. 45, 5686–5692 (2006).

[CrossRef]
[PubMed]

C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004).

[CrossRef]

V. N. AstratovJ. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004).

[CrossRef]

M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).

[CrossRef]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005).

[CrossRef]

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part 3 94, 65–68(1947).

C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005).

[CrossRef]
[PubMed]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).

[CrossRef]

E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007).

[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008).

[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).

[CrossRef]

K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896–5901(2004).

[CrossRef]
[PubMed]

V. N. Astratov and S. P. Ashili, “Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres,” Opt. Express 15, 17351–17361 (2007).

[CrossRef]
[PubMed]

G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Ya. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles” Opt. Express 15, 17380–17391 (2007).

[CrossRef]
[PubMed]

C.-S. Deng, H. Xu, and L. Deych, “Effect of size disorder on the optical transport in chains of coupled microspherical resonators,” Opt. Express 19, 6923–6937 (2011).

[CrossRef]
[PubMed]

J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005).

[CrossRef]
[PubMed]

J. Sancho-Parramón, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).

[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).

[CrossRef]
[PubMed]

C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, “Synthesis of structured partially spatially coherent beams,” Opt. Lett. 36, 1638–1640 (2011).

[CrossRef]
[PubMed]

R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34, 3541–3543 (2009).

[CrossRef]
[PubMed]

X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005).

[CrossRef]

Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004).

[CrossRef]

D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010).

[CrossRef]

G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204(2003).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999).

[CrossRef]

C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995).

[CrossRef]

B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126(1998).

[CrossRef]

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).

[CrossRef]
[PubMed]

D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980).

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008).

[CrossRef]
[PubMed]

C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994).

[CrossRef]

G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003).

[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).

[CrossRef]
[PubMed]

V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol. 2.

D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill, 1990), Chap. 8.

J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” (2007) arXiv:cond-mat/0701332v1 [cond-mat.mtrl-sci].