Abstract

In this study, a mode-locked hybrid soliton pulse source (HSPS) utilizing sinusoidal chirped fiber Bragg grating (FBG) is reported for the first time, using the time-domain solution of coupled wave equations and rate equations. The sinusoidal chirped FBG provides a wider bandwidth by adjusting the reversion coefficient or chirp rate even if the FBG length is short. Numerical results also indicate that an HSPS-utilized sinusoidal chirped FBG produces shorter pulses in the 2572ps range, whereas the pulses range from 31 to 97ps for a linearly chirped tanh apodized grating, and from 30 to 80ps for a linearly chirped Gaussian apodized grating, along with an increase in the mode-locking frequency range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode-locked single InGaAsP/InP quantum well laser,” Opt. Express 16, 10675–10683 (2008).
    [CrossRef]
  2. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
    [CrossRef]
  3. T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
    [CrossRef]
  4. W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
    [CrossRef]
  5. V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
    [CrossRef]
  6. D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
    [CrossRef]
  7. G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
    [CrossRef]
  8. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef]
  9. P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
    [CrossRef]
  10. N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 644–652 (2009).
    [CrossRef]
  11. N. Dogru, “Mode-locked performance of hybrid soliton pulse source utilizing fiber grating external cavity lasers,” Opt. Commun. 260, 227–231 (2006).
    [CrossRef]
  12. N. Dogru, “Extremely increasing the operating frequency range of hybrid soliton pulse source,” Chin. Phys. Lett. 23, 838–841 (2006).
    [CrossRef]
  13. M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
    [CrossRef]
  14. M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.
  15. Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
    [CrossRef]
  16. A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
    [CrossRef]
  17. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.
  18. Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
    [CrossRef]
  19. L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003).
    [CrossRef]
  20. L. Zhang and C. Yang, “Improving the performance of fiber gratings with sinusoidal chirps,” Appl. Opt. 42, 2181–2187 (2003).
    [CrossRef]
  21. L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.
  22. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [CrossRef]
  23. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  24. P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
    [CrossRef]
  25. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
    [CrossRef]
  26. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
    [CrossRef]
  27. M. Sayin, “Theoretical model of the mode-locked hybrid soliton pulse source,” Ph.D. thesis (University of Gaziantep, 1999).
  28. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
    [CrossRef]
  29. M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).
  30. M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
    [CrossRef]

2009 (1)

N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 644–652 (2009).
[CrossRef]

2008 (1)

2007 (1)

M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
[CrossRef]

2006 (2)

N. Dogru, “Mode-locked performance of hybrid soliton pulse source utilizing fiber grating external cavity lasers,” Opt. Commun. 260, 227–231 (2006).
[CrossRef]

N. Dogru, “Extremely increasing the operating frequency range of hybrid soliton pulse source,” Chin. Phys. Lett. 23, 838–841 (2006).
[CrossRef]

2003 (5)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
[CrossRef]

L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003).
[CrossRef]

L. Zhang and C. Yang, “Improving the performance of fiber gratings with sinusoidal chirps,” Appl. Opt. 42, 2181–2187 (2003).
[CrossRef]

M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).

2002 (2)

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

2001 (3)

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

2000 (1)

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

1999 (1)

A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[CrossRef]

1997 (2)

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1995 (2)

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

1994 (2)

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

1993 (1)

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

1987 (1)

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Akrout, A.

Andrekson, P. A.

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Aubin, G.

Azana, J.

A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Bayvel, P.

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

Benjamin, S. D.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Bennion, I.

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Birkin, D. J. L.

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Carballar, A.

A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Chang, H. W.

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

Chen, L. R.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Cheng, W.

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

Chiu, S.

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

Coblentz, D. L.

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Ding, L.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Dogru, N.

N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 644–652 (2009).
[CrossRef]

M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
[CrossRef]

N. Dogru, “Mode-locked performance of hybrid soliton pulse source utilizing fiber grating external cavity lasers,” Opt. Commun. 260, 227–231 (2006).
[CrossRef]

N. Dogru, “Extremely increasing the operating frequency range of hybrid soliton pulse source,” Chin. Phys. Lett. 23, 838–841 (2006).
[CrossRef]

Dong, X. Y.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Duan, G. H.

Durkin, M. K.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

Feced, R.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.

Feng, D. J.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Harvey, G.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Hong, C. Y.

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

Horiguchi, T.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Ibsen, M.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.

Jiang, J.

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

Jin, G.

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

Kai, G. Y.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Lealman, I.

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

Lelarge, F.

Lemaire, P.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Liao, C. J.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Liu, N.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Liu, S. H.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Liu, Y.

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Liu, Z. G.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Logan, R. A.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Martinez, A.

Merghem, K.

Mikhailov, V.

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

Miller, D. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Mizrahi, V.

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Mollenauer, L.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

Moreau, G.

Morton, P. A.

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Myriel, M. A.

A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

Ouellette, F.

Ozyazici, M. S.

M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
[CrossRef]

M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

Petropoulos, P.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.

Phillips, M. R.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

Presby, H. M.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

Qin, Z. X.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Rafailov, E. U

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Ramdane, A.

Ramirez, C.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.

Ran, Z. L.

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

Rau, Y.

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

Sato, T.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Sayin, M.

M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
[CrossRef]

M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).

M. Sayin, “Theoretical model of the mode-locked hybrid soliton pulse source,” Ph.D. thesis (University of Gaziantep, 1999).

Sciortino, P. F.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Sergent, A. M.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Sibbett, W.

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Sipe, J. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

Smith, P. W. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Takesue, H.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Tanbun-Ek, T.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Tourrenc, J. P.

Tsuji, K.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Van Dijk, F.

Wecht, K. W.

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

Woodward, S. L.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

Wu, Z.

G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
[CrossRef]

Wyatt, R.

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

Xia, G.

G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
[CrossRef]

Xiang, Y.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Xiao, M.

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

Yamamoto, F.

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

Yan, Y.

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

Yang, C.

L. Zhang and C. Yang, “Improving the performance of fiber gratings with sinusoidal chirps,” Appl. Opt. 42, 2181–2187 (2003).
[CrossRef]

L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003).
[CrossRef]

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

Yuan, S. Z.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Zeng, Q. K.

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

Zervas, M. N.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.

Zhang, L.

L. Zhang and C. Yang, “Improving the performance of fiber gratings with sinusoidal chirps,” Appl. Opt. 42, 2181–2187 (2003).
[CrossRef]

L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003).
[CrossRef]

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

Zhang, L. M.

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

Zhou, H.

G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
[CrossRef]

Zhu, T.

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994).
[CrossRef]

D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001).
[CrossRef]

Chin. Phys. Lett. (4)

Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001).
[CrossRef]

N. Dogru, “Extremely increasing the operating frequency range of hybrid soliton pulse source,” Chin. Phys. Lett. 23, 838–841 (2006).
[CrossRef]

Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002).
[CrossRef]

L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003).
[CrossRef]

Electron. Lett. (1)

V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 644–652 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995).
[CrossRef]

T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002).
[CrossRef]

P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993).
[CrossRef]

A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[CrossRef]

P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

J. Lightwave Technol. (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).

Opt. Commun. (1)

N. Dogru, “Mode-locked performance of hybrid soliton pulse source utilizing fiber grating external cavity lasers,” Opt. Commun. 260, 227–231 (2006).
[CrossRef]

Opt. Eng. (1)

M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000).
[CrossRef]

Optik (1)

G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003).
[CrossRef]

Other (4)

L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.

M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.

M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.

M. Sayin, “Theoretical model of the mode-locked hybrid soliton pulse source,” Ph.D. thesis (University of Gaziantep, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of HSPS with chirped FBG.

Fig. 2.
Fig. 2.

Reflectivity and group delay characteristics for sinusoidally chirped Gaussian apodized (dashed line) and linearly chirped Gaussian apodized (solid line) FBG.

Fig. 3.
Fig. 3.

(a) Reflectivity as a function of grating chirp. (b) Group delay curves for different chirp rates.

Fig. 4.
Fig. 4.

(a) Reflectivity as a function of reversion coefficient. (b) Group delay curves for different reversion coefficients.

Fig. 5.
Fig. 5.

(a) Reflectivity as a function of grating length. (b) Group delay curve for different values of grating lengths.

Fig. 6.
Fig. 6.

(a) Reflectivity as a function of modulation index. (b) Group delay curves for different values of modulation index.

Fig. 7.
Fig. 7.

The output of the laser section for 10 periods of the input signal.

Fig. 8.
Fig. 8.

FWHM and frequency offset as a function of mode-locking frequency.

Fig. 9.
Fig. 9.

FWHM as a function of mode-locking frequency for all rf and dc currents.

Fig. 10.
Fig. 10.

TBP as a function of mode-locking frequency for all rf and dc currents.

Fig. 11.
Fig. 11.

Peak power as a function of mode-locking frequency for all rf and dc currents.

Fig. 12.
Fig. 12.

FWHM and peak powers as a function of rf current for the dc current of 6 mA and frequency of 2.5 GHz .

Fig. 13.
Fig. 13.

FWHM and peak powers as a function of dc current for the rf current of 22 mA and frequency of 2.5 GHz .

Tables (2)

Tables Icon

Table 1. Standard Parameters for the FBG Model

Tables Icon

Table 2. Laser Diode Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n co + Δ n ( z ) [ 1 + m cos ( 2 π Λ ( z ) z ) ] ,
Λ ( z ) = Λ o + Λ o 2 2 π C sin ( 2 π p L z ) ,
d F d z = j ( δ + 2 κ ( z ) m 1 2 d φ d z ) F j κ ( z ) R ,
d R d z = j ( δ + 2 κ ( z ) m 1 2 d φ d z ) R + j κ ( z ) F ,
σ ( z ) = δ + 2 κ ( z ) m 1 2 d φ d z .
κ ( z ) = κ p exp ( 4 ln 2 FWHM g 2 z 2 ) ,
d N ( z , t ) d t = I ( t ) e V N ( z , t ) τ n a o ( N ( z , t ) N o ) 1 + ε S ( z , t ) v g S ( z , t ) ,
Δ n = λ o 4 π Γ α a o Δ N ( z , t ) ,

Metrics