Abstract

We investigate the performance of a magnesium-oxide-doped periodically poled lithium niobate crystal (MgO:PPLN) in an optical parametric oscillator (OPO) synchronously pumped by 530nm, 20ps, 230MHz pulses with an average power of up to 2W from a frequency-doubled, gain-switched LD seed and a multistage Yb:fiber amplifier system. The OPO produces 165mW (signal, 845nm) and 107mW (idler, 1421nm) of average power for 1W of pump power and can be tuned from 800 to 900nm (signal) and 1.28 to 1.54μm (idler). Observations of photorefraction and green-induced infrared absorption in different operational regimes of the MgO:PPLN OPO are described and the role of peak intensity and average power are investigated, both with the aim to find the optimal operating regime for pulsed systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
    [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [CrossRef] [PubMed]
  3. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
    [CrossRef] [PubMed]
  4. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34, 2051–2053 (2009).
    [CrossRef] [PubMed]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  6. S. D. Butterworth, S. Girard, and D. C. Hanna, “High-power, broadly tunable all-solid-state synchronously pumped lithium triborate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2158–2167 (1995).
    [CrossRef]
  7. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
    [CrossRef]
  8. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillators with LiB5B5,” J. Opt. Soc. Am. B 12, 2147–2157 (1995).
    [CrossRef]
  9. T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16, 90–95 (1999).
    [CrossRef]
  10. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  11. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).
  12. F. Jermann, M. Simon, and E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
    [CrossRef]
  13. R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 23, 168–170 (1998).
    [CrossRef]
  14. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
    [CrossRef]
  15. J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
    [CrossRef]
  16. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
    [CrossRef]
  17. D.-H. Lee, S. K. Kim, S.-N. Park, H. S. Park, J. Y. Lee, and S.-K. Choi, “Continuous-wave 532 nm pumped MgO:PPLN optical parametric oscillator with external power regulation and spatial mode filtering,” Appl. Opt. 48, 37–42 (2009).
    [CrossRef]
  18. S. Zaske, D. H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
    [CrossRef]
  19. H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
    [CrossRef]
  20. C. B. E. Gawith, Covesion Ltd., Romsey SO51 9DG, UK (personal communication, 2011).
  21. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031(1996).
    [CrossRef]
  22. P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
    [CrossRef]
  23. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  24. F. Kienle, K. K. Chen, S.-U. Alam, C. B. E. Gawith, J. I. Mackenzie, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode,” Opt. Express 18, 7602–7610 (2010).
    [CrossRef] [PubMed]
  25. F. Kienle, P. S. Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35, 3580–3582 (2010).
    [CrossRef] [PubMed]
  26. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).
  27. K. K. Chen, J. H. V. Price, S.-U. Alam, J. R. Hayes, D. J. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100 W Yb-fiber MOPA producing μJ pulses tunable in duration from 1 to 21 ps,” Opt. Express 18, 14385–14394 (2010).
    [CrossRef] [PubMed]
  28. S. Lecomte, R. Paschotta, M. Golling, D. Ebling, and U. Keller, “Synchronously pumped optical parametric oscillators in the 1.5 μm spectral region with a repetition rate of 10 GHz,” J. Opt. Soc. Am. B 21, 844–850 (2004).
    [CrossRef]
  29. X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
    [CrossRef]
  30. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [CrossRef]
  31. S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
    [CrossRef]
  32. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180–2190 (1993).
    [CrossRef]
  33. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
    [CrossRef] [PubMed]
  34. D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
    [CrossRef]
  35. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337(2000).
    [CrossRef]
  36. J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.
  37. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
    [CrossRef]

2011 (1)

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

2010 (4)

2009 (3)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

2007 (1)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

2006 (3)

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
[CrossRef] [PubMed]

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

1996 (1)

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031(1996).
[CrossRef]

1995 (4)

1994 (1)

1993 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Alam, S.-U.

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bartels, A.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Batchko, R. G.

Becher, C.

S. Zaske, D. H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Bosenberg, W. R.

Bouwmans, H. S. P.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).

Brunner, F.

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Buse, K.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Butterworth, S. D.

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031(1996).
[CrossRef]

S. D. Butterworth, S. Girard, and D. C. Hanna, “High-power, broadly tunable all-solid-state synchronously pumped lithium triborate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2158–2167 (1995).
[CrossRef]

Byer, R. L.

Carrasco, S.

Chen, K. K.

Chimento, P. F.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Choi, S.-K.

Cleff, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ebling, D.

Eckardt, R. C.

Epping, J.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Falk, M.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Fallnich, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 23, 168–170 (1998).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Fibich, G.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Furuya, H.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

Gaeta, A. L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Ganikhanov, F.

Garbacik, E. T.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Gawith, C. B. E.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Giessen, H.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Girard, S.

Golling, M.

Greve, J.

Gross, P.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

Guha, S.

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[CrossRef]

Hanna, D. C.

Hartsuiker, L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Hayes, J. R.

Hebling, J.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Hell, S. W.

Herek, J. L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

Holtom, G. R.

Innerhofer, E.

Ito, H.

Jermann, F.

Jones, I. R.

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Jundt, D. H.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Jurna, M.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

Kafka, J. D.

Kajiyama, M. C. C.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Katz, M.

Keller, U.

Kienle, F.

Kieu, K.

Kim, S. K.

Kitamura, K.

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
[CrossRef] [PubMed]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Kopf, D.

Korterik, J. P.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

Krätzig, E.

Kuhl, J.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Kurimura, S.

Laurell, F.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

Lecomte, S.

Lee, D. H.

S. Zaske, D. H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Lee, D.-H.

Lee, J. Y.

Legge, D.

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Lin, D. J.

Mackenzie, J. I.

Malinowski, A.

Markosyan, A.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

McCarthy, M. J.

Miller, G. D.

Mizuuchi, K.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

Morikawa, A.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

Myers, L. E.

Nakamura, M.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Nau, D.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

Offerhaus, H. L.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

Otto, C.

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16, 90–95 (1999).
[CrossRef]

Park, H. S.

Park, S.-N.

Paschotta, R.

Pasiskevicius, V.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

Pierce, J. W.

Pieterse, J. W.

Plettner, T.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Price, J. H. V.

Pruneri, V.

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031(1996).
[CrossRef]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Richardson, D. J.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Rühle, W. W.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Saar, B. G.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Schwesyg, J. R.

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

Seitz, W.

Shepherd, D. P.

Simon, M.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Südmeyer, T.

Takekawa, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Teh, P. S.

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Terry, J. A. C.

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Thorne, D. H.

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Titterton, D. H.

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Tukker, T. W.

Usami, T.

Wang, S.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

Watts, M. L.

Weise, D. R.

Wichmann, J.

Wise, F. W.

Xie, X. S.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34, 2051–2053 (2009).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Xie, X. Sunney

Yamamoto, K.

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

Zaske, S.

S. Zaske, D. H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Zhang, X. P.

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

C. Cleff, J. Epping, P. Gross, and C. Fallnich, “Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy,” Appl. Phys. B 103, 795–800 (2011).
[CrossRef]

S. Zaske, D. H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66, 663–675 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031(1996).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116–251113 (2006).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

X. P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W. W. Rühle, and H. Giessen, “1-GHz-repetition-rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 80, 1873–1875 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 033105(2007).
[CrossRef]

J. Opt. Soc. Am. B (7)

J. Raman Spectrosc. (1)

P. F. Chimento, M. Jurna, H. S. P. Bouwmans, E. T. Garbacik, L. Hartsuiker, C. Otto, J. L. Herek, and H. L. Offerhaus, “High-resolution narrowband CARS spectroscopy in the spectral fingerprint region,” J. Raman Spectrosc. 40, 1229–1233 (2009).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys. Part 1 45, 6704–6707 (2006).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3,” Jpn. J. Appl. Phys. Part 2 41, L49–L51 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

F. Kienle, P. S. Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35, 3580–3582 (2010).
[CrossRef] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34, 2051–2053 (2009).
[CrossRef] [PubMed]

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, “Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 23, 168–170 (1998).
[CrossRef]

G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337(2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. H. Titterton, J. A. C. Terry, D. H. Thorne, I. R. Jones, and D. Legge, “Observation of damage in PPLN,” Proc. SPIE 4268, 5–13 (2001).
[CrossRef]

Other (4)

J. R. Schwesyg, A. Markosyan, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Optical loss mechanisms in magnesium-doped lithium niobate crystals in the 300 to 2950 nm wavelength range,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIThE3.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2002).

C. B. E. Gawith, Covesion Ltd., Romsey SO51 9DG, UK (personal communication, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the fiber-amplified gain-switched LD MOPA system including the LBO frequency-doubling arrangement. LD, laser diode; CFBG, chirped fiber Bragg grating; EOM, electro-optic modulator; YDF, ytterbium-doped fiber; DM, dichroic mirror; PBS, polarizing beam splitter. All fibers, wavelength-division multiplexers, and optical isolators were polarization maintaining.

Fig. 2
Fig. 2

Normalized spectra of the second-harmonic output measured at different power levels (spectrum analyzer resolution 0.05 nm ). The FWHM at each power level is indicated in brackets.

Fig. 3
Fig. 3

Layout of the singly resonant (signal), bow-tie OPO ring resonator. The pump beam was focused with a 175 mm lens into the center of the MgO:PPLN after reducing its size with a telescope. The radius of curvature of CM1 and CM2 was 250 mm . Two out put coupler mirrors with signal transmissions of 10% and 3% were available. The mechanical chopper allowed for reduction of the input average power without reduction of the pulse peak power.

Fig. 4
Fig. 4

Signal and idler output power and pump depletion as a function of input pump power using the 7.0 μm poled grating of the MgO:PPLN and a 3% OC.

Fig. 5
Fig. 5

Output power and pump depletion versus pump power using a mechanical chopper to reduce the average input power by a factor of 10. The 6.9 μm poled grating and the 3% OC were used. All power values plotted represent the average power within the transmit cycle of the chopper.

Fig. 6
Fig. 6

Fractional deviation around the mean value of the MOPA output ( 1060 nm ), the frequency-doubled output ( 530 nm ), and the OPO signal output ( 845 nm ) over a period of 10 min .

Fig. 7
Fig. 7

Same as Fig. 5, but with a 10% OC. All power values plotted represent the average power within the transmit cycle of the chopper.

Fig. 8
Fig. 8

Microscope image of the damage within the 7.1 μm poled grating, where individual damage tracks are clearly visible.

Tables (1)

Tables Icon

Table 1 Summary of the Different OPO Pump Regimes and Damage Effects Observed (Optical, Spots/Beam Distortion during Operation; Physical, Degradation of the Crystal Visible with a Microscope)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P s = P pump D λ p λ s T OC T OC + ε s ,
I peak = P av Δ t × f rep ( π 2 w 0 2 ) ,

Metrics