Abstract

Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited. A study of the effect on transmission of different combinations of available transmission and reflection diffraction orders show optimum total transmission when only the fundamental reflection order and higher transmission diffraction orders are available. The optimum taper angle is shown to be in the range of 6°10°. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh–Wood anomalies.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  4. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef] [PubMed]
  5. S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
    [CrossRef] [PubMed]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
    [CrossRef]
  7. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
    [CrossRef]
  8. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  9. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
    [CrossRef]
  10. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
    [CrossRef]
  11. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
    [CrossRef]
  12. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  13. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
    [CrossRef]
  14. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
    [CrossRef]
  15. D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
    [CrossRef]
  16. A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
    [CrossRef]
  17. Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
    [CrossRef]
  18. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
    [CrossRef]
  19. C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
    [CrossRef] [PubMed]
  20. D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
    [CrossRef]
  21. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
    [CrossRef]
  22. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
    [CrossRef]
  23. M. I. Stockmann, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  24. M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010).
    [CrossRef]
  25. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
    [CrossRef]
  26. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
    [CrossRef]
  27. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  28. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  29. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  30. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009).
    [CrossRef] [PubMed]
  31. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
    [CrossRef] [PubMed]
  32. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
    [CrossRef] [PubMed]
  33. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
    [CrossRef] [PubMed]
  34. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
    [CrossRef]
  35. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
    [CrossRef]
  36. T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
    [CrossRef]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  38. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
    [CrossRef] [PubMed]
  39. U. Fano, “The theory of anomalous diffraction gratings,” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  40. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297(1965).
    [CrossRef]
  41. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef] [PubMed]

2011

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

2010

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

2009

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

2008

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

2007

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

2005

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

2004

M. I. Stockmann, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

2003

Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

2002

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

2001

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

2000

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1965

1941

Akozbek, N.

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

Atwater, H.

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Bardou, N.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Bartal, G.

Beermann, J.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

Billaudeau, C.

Bloemer, M. J.

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Bozhevolnyi, S. I.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Bustarrat, E.

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Chavel, P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

Choi, H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collin, S.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

De Ceglia, D.

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Devaux, E.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Fano, U.

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gramotnev, D. K.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Haïder, R.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Hessel, A.

Hibbins, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

Hugonin, J. P.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, J.

Kim, H. K.

Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Lopez-Rioz, T.

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Møller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Nam, S.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nerkararyan, Kh. V.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Novikov, S. M.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Oliner, A. A.

Pacifici, D.

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Pardo, F.

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009).
[CrossRef] [PubMed]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009).
[CrossRef] [PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Rodier, J. C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Rommeluére, S.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Sambles, J. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

Sauvan, C.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

Scalora, M.

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

Søndergaard, T.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Stockmann, M. I.

M. I. Stockmann, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

Suk, Y.

Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

Sun, Z.

Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Vincent, G.

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

Vincenti, M. A.

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Vogel, M. W.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

Weiner, J.

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Zhang, X.

AIP Advances

D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000).
[CrossRef]

J. Appl. Phys.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

J. Opt. A

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002).
[CrossRef]

J. Opt. Soc. Am.

Nano Lett.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nat. Photon.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

New J. Phys.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011).
[CrossRef]

Opt. Commun.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003).
[CrossRef]

D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008).
[CrossRef]

A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001).
[CrossRef]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

M. I. Stockmann, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of a periodic array of tapered slits in a metal film placed on a substrate. The geometry is characterized by the film thickness h, taper angle α, slit opening at the bottom g, and period Λ. The geometry is illuminated with p-polarized light.

Fig. 2
Fig. 2

Transmission versus film thickness h and wavelength of normally incident light for the geometry in Fig. 1 with Λ = 500 nm , g = 10 nm , α = 10 ° , and an air substrate. (a) Gold film; (b) silver film.

Fig. 3
Fig. 3

Magnitude of electric field normalized with the magnitude of the normally incident field for the geometry considered in Fig. 1 with g = 10 nm , α = 10 ° , Λ = 500 nm , and wavelength 1000 nm for different gold film thicknesses h with resonant transmission.

Fig. 4
Fig. 4

Transmission versus gold film thickness h and wavelength of normally incident light for the geometry in Fig. 1 with Λ = 500 nm , g = 10 nm , α = 10 ° , and a glass substrate.

Fig. 5
Fig. 5

Transmission spectra for the geometry in Fig. 1 with and without a glass substrate and with g = 10 nm , α = 10 ° , Λ = 500 nm , and gold film thicknesses h = 250 , 625, 1075, and 1525 nm . Light is normally incident.

Fig. 6
Fig. 6

Transmission versus gold film thickness h and wavelength of normally incident light for the geometry in Fig. 1 with Λ = 1000 nm , g = 10 nm , α = 10 ° , and an air substrate.

Fig. 7
Fig. 7

Transmission versus gold film thickness h and wavelength of incident light for the geometry in Fig. 1 with Λ = 1000 nm , g = 10 nm , α = 10 ° , air substrate, and angle of light incidence of 15 ° .

Fig. 8
Fig. 8

Transmission versus gold film thickness h and wavelength of normally incident light for the geometry in Fig. 1 with Λ = 1000 nm , g = 10 nm , α = 10 ° , and glass substrate.

Fig. 9
Fig. 9

Transmission versus taper angle α and wavelength of normally incident light for the geometry in Fig. 1 with Λ = 500 nm , g = 10 nm , air substrate, and two different gold film thicknesses h.

Fig. 10
Fig. 10

Transmission versus taper angle α and gold film thickness h for the geometry in Fig. 1 with Λ = 500 nm , g = 10 nm , α = 10 ° , and air substrate. The wavelength of normally incident light is 1000 nm .

Fig. 11
Fig. 11

Total transmission versus period Λ for normally incident light on the geometry in Fig. 1 with α = 10 ° nm , g = 10 nm , air substrate, and two different gold film thicknesses h. The transmission is normalized with g / Λ .

Fig. 12
Fig. 12

Transmission (zero order and total) versus period Λ for light being normally incident on the geometry in Fig. 1 with α = 10 ° nm , g = 10 nm , glass substrate, and gold film thickness h = 250 nm . The transmission is normalized with g / Λ .

Fig. 13
Fig. 13

Cross sections for specific periods Λ of the results in Fig. 12.

Fig. 14
Fig. 14

Theoretically calculated and experimentally measured transmission for a periodic array of tapered slits with taper angle α = 17.5 ° , gap g = 25 nm , glass substrate, and gold film thickness h = 180 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 y = 0 h β GP ( y ) d y + ϕ R = 2 π m ,
λ = Λ ( 1 ± sin θ ) ,

Metrics