Abstract

Multidimensional spectroscopies provide increased spectral information but time resolution is often limited by the picosecond lifetimes of the transitions they probe. At the expense of additional complexity, transient multidimensional techniques extend the accessible timescales for studying nonequilibrium chemical and biophysical phenomena. Transient temperature-jump (T-jump) experiments are particularly versatile, since they can be applied to any temperature-dependent change of state. We have developed a method to correct transient nonlinear techniques for distortions resulting from transient linear absorption of the probing pulses, distortions which can lead to false interpretations of the data. We apply these corrections in the collection of T-jump transient two- dimensional infrared spectra for the peptides diglycine and the β-hairpin peptide trpzip2. For diglycine, the T-jump induces changes in H-bonding, a response which is inherent to all aqueous systems. The trpzip2 results probe the hairpin unfolding kinetics and reveal two time scales: <10ns increased flexibility and 1.1μs β-hairpin disordering.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription