Abstract

In this paper, a secure optical chaos-based communication scheme is proposed. A semiconductor laser (SL) subjected to polarization-rotated optical feedback serves as the drive laser (DL), and two identical or near-identical SLs act as the transmitter laser (TL) and receiver laser (RL). The TL and the RL receive identical polarization-rotated optical injection from the DL. Two channels are used, and the TM mode of the DL, after being rotated by 90°, serves as the perturbation quantity. The communication performance is numerically studied. More importantly, the high fidelity and high degree of privacy of the proposed scheme are verified in detail, and the failure of two potential attacker scenarios is demonstrated, even if the attacker can get access to both channels simultaneously.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
    [CrossRef]
  2. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
    [CrossRef] [PubMed]
  3. S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
    [CrossRef]
  4. J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38, 1141–1154 (2002).
    [CrossRef]
  5. A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
    [CrossRef]
  6. J. Paul, S. Sivaprakasam, and K. A. Shore, “Dual-channel chaotic optical communication using external-cavity semiconductor lasers,” J. Opt. Soc. Am. B 21, 514–521 (2004).
    [CrossRef]
  7. M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
    [CrossRef]
  8. N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
    [CrossRef]
  9. S. Sivaprakasam and K. A. Shore, “Critical signal strength for effective decoding in diode laser chaotic optical communications,” Phys. Rev. E 61, 5997–5999 (2000).
    [CrossRef]
  10. L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
    [CrossRef]
  11. X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
    [CrossRef]
  12. W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
    [CrossRef] [PubMed]
  13. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–825 (1990).
    [CrossRef] [PubMed]
  14. J. Paul, M. W. Lee, and K. A. Shore, “Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes,” Opt. Lett. 29, 2497–2499 (2004).
    [CrossRef] [PubMed]
  15. A. Murakami and K. A. Shore, “Chaos-pass filtering in injection-locked semiconductor lasers,” Phys. Rev. A 72, 053810 (2005).
    [CrossRef]
  16. C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993).
    [CrossRef]
  17. C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
    [CrossRef]
  18. T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
    [CrossRef]
  19. C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
    [CrossRef]
  20. F. Rogister, A. Locquet, D. Pieroux, M. Sciamanna, O. Deparis, P. Megret, and M. Blondel, “Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection,” Opt. Lett. 26, 1486–1488(2001).
    [CrossRef]
  21. T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
    [CrossRef]
  22. D. W. Sukow, K. L. Blackburn, A. R. Spain, K. J. Babcock, J. V. Bennett, and A. Gavrielides, “Experimental synchronization of chaos in diode lasers with polarization-rotated feedback and injection,” Opt. Lett. 29, 2393–2395 (2004).
    [CrossRef] [PubMed]
  23. D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
    [CrossRef]
  24. N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
    [CrossRef]
  25. A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
    [CrossRef]
  26. D. Rontani, M. Sciamanna, A. Locquet, and D. S. Citrin, “Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks,” Phys. Rev. E 80, 066209 (2009).
    [CrossRef]
  27. S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
    [CrossRef]
  28. V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
    [CrossRef]
  29. A. N. Pisarchik and F. R. Ruiz-Oliveras, “Optical chaotic communication using generalized and complete synchronization,” IEEE J. Quantum Electron. 46, 279–284 (2010).
    [CrossRef]
  30. W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
    [CrossRef]
  31. A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
    [CrossRef]
  32. O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
    [CrossRef]
  33. N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
    [CrossRef]
  34. N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
    [CrossRef]

2011 (2)

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

2010 (5)

N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
[CrossRef]

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

A. N. Pisarchik and F. R. Ruiz-Oliveras, “Optical chaotic communication using generalized and complete synchronization,” IEEE J. Quantum Electron. 46, 279–284 (2010).
[CrossRef]

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

2009 (2)

D. Rontani, M. Sciamanna, A. Locquet, and D. S. Citrin, “Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks,” Phys. Rev. E 80, 066209 (2009).
[CrossRef]

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

2008 (4)

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
[CrossRef]

W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
[CrossRef] [PubMed]

2006 (2)

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

2005 (4)

M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

A. Murakami and K. A. Shore, “Chaos-pass filtering in injection-locked semiconductor lasers,” Phys. Rev. A 72, 053810 (2005).
[CrossRef]

2004 (3)

2003 (1)

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

2002 (3)

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38, 1141–1154 (2002).
[CrossRef]

2001 (1)

2000 (2)

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Critical signal strength for effective decoding in diode laser chaotic optical communications,” Phys. Rev. E 61, 5997–5999 (2000).
[CrossRef]

1998 (2)

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef] [PubMed]

1993 (1)

C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993).
[CrossRef]

1992 (1)

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

1990 (1)

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–825 (1990).
[CrossRef] [PubMed]

Aida, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Amonette, J.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Antonelli, C.

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

Argyris, A.

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Aromataris, G.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

Babcock, K. J.

Baracco, M. J.

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

Benedetti, M.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

Bennett, J. V.

Blackburn, K. L.

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

D. W. Sukow, K. L. Blackburn, A. R. Spain, K. J. Babcock, J. V. Bennett, and A. Gavrielides, “Experimental synchronization of chaos in diode lasers with polarization-rotated feedback and injection,” Opt. Lett. 29, 2393–2395 (2004).
[CrossRef] [PubMed]

Blondel, M.

Bogris, A.

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

Burner, G.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–825 (1990).
[CrossRef] [PubMed]

Chen, H. F.

M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
[CrossRef]

Chiang, M. C.

M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
[CrossRef]

Chlouverkis, K. E.

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

Chua, L. O.

C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993).
[CrossRef]

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

Citrin, D. S.

D. Rontani, M. Sciamanna, A. Locquet, and D. S. Citrin, “Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks,” Phys. Rev. E 80, 066209 (2009).
[CrossRef]

Colet, P.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Davis, P.

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Deparis, O.

Eckert, K.

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

Elsäßer, W.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Erneux, T.

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Garcia-Ojalvo, J.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Gavrielides, A.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

D. W. Sukow, K. L. Blackburn, A. R. Spain, K. J. Babcock, J. V. Bennett, and A. Gavrielides, “Experimental synchronization of chaos in diode lasers with polarization-rotated feedback and injection,” Opt. Lett. 29, 2393–2395 (2004).
[CrossRef] [PubMed]

Goedgebuer, J. P.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
[CrossRef]

Halle, K. S.

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

Heil, T.

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Jiang, N.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
[CrossRef]

Kocarev, L. J.

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

Larger, L.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
[CrossRef]

Lee, M. W.

Li, N.-Q.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

Li, X.-F.

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

Liu, J. M.

M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
[CrossRef]

Locquet, A.

Luo, B.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
[CrossRef]

W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
[CrossRef] [PubMed]

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

Ma, D.

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

Masoller, C.

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
[CrossRef]

McLachlan, T.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

Mecozzi, A.

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

Megret, P.

Merlo, S.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

Miller, J.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

Mirasso, C. R.

O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
[CrossRef]

Mulet, J.

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Murakami, A.

A. Murakami and K. A. Shore, “Chaos-pass filtering in injection-locked semiconductor lasers,” Phys. Rev. A 72, 053810 (2005).
[CrossRef]

Ohtsubo, J.

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38, 1141–1154 (2002).
[CrossRef]

Pan, W.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
[CrossRef]

W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
[CrossRef] [PubMed]

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

Pang, W.

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

Parlitz, U.

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

Parmenter, Z. A.

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

Paul, J.

Pecora, L. M.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–825 (1990).
[CrossRef] [PubMed]

Peil, M.

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

Pesquera, L.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Pieroux, D.

Pisarchik, A. N.

A. N. Pisarchik and F. R. Ruiz-Oliveras, “Optical chaotic communication using generalized and complete synchronization,” IEEE J. Quantum Electron. 46, 279–284 (2010).
[CrossRef]

Porte, H.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
[CrossRef]

Rizomiliotis, P.

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

Rogister, F.

Rontani, D.

D. Rontani, M. Sciamanna, A. Locquet, and D. S. Citrin, “Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks,” Phys. Rev. E 80, 066209 (2009).
[CrossRef]

Rosso, O. A.

O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
[CrossRef]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef] [PubMed]

Ruiz-Oliveras, F. R.

A. N. Pisarchik and F. R. Ruiz-Oliveras, “Optical chaotic communication using generalized and complete synchronization,” IEEE J. Quantum Electron. 46, 279–284 (2010).
[CrossRef]

Santagiustina, M.

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

Sciamanna, M.

Shibasaki, N.

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

Shore, K. A.

A. Murakami and K. A. Shore, “Chaos-pass filtering in injection-locked semiconductor lasers,” Phys. Rev. A 72, 053810 (2005).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

J. Paul, S. Sivaprakasam, and K. A. Shore, “Dual-channel chaotic optical communication using external-cavity semiconductor lasers,” J. Opt. Soc. Am. B 21, 514–521 (2004).
[CrossRef]

J. Paul, M. W. Lee, and K. A. Shore, “Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes,” Opt. Lett. 29, 2497–2499 (2004).
[CrossRef] [PubMed]

S. Sivaprakasam and K. A. Shore, “Critical signal strength for effective decoding in diode laser chaotic optical communications,” Phys. Rev. E 61, 5997–5999 (2000).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

Sivaprakasam, S.

J. Paul, S. Sivaprakasam, and K. A. Shore, “Dual-channel chaotic optical communication using external-cavity semiconductor lasers,” J. Opt. Soc. Am. B 21, 514–521 (2004).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Critical signal strength for effective decoding in diode laser chaotic optical communications,” Phys. Rev. E 61, 5997–5999 (2000).
[CrossRef]

Spain, A. R.

Sukow, D. W.

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

D. W. Sukow, K. L. Blackburn, A. R. Spain, K. J. Babcock, J. V. Bennett, and A. Gavrielides, “Experimental synchronization of chaos in diode lasers with polarization-rotated feedback and injection,” Opt. Lett. 29, 2393–2395 (2004).
[CrossRef] [PubMed]

Syvridis, D.

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

Syvrids, D.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Tang, Y.-L.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

Uchida, A.

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

Ursini, L.

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef] [PubMed]

Vicente, R.

O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
[CrossRef]

Wang, M. Y.

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
[CrossRef] [PubMed]

Wen, K.-H.

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

Wu, C. W.

C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993).
[CrossRef]

Xiang, S.-Y.

Xu, M.-F.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

Yan, L.-S.

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, Y.-L. Tang, N. Jiang, and S.-Y. Xiang, “Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm,” J. Opt. Soc. Am. B 28, 2018–2024 (2011).
[CrossRef]

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

N. Jiang, W. Pan, L.-S. Yan, B. Luo, W.-L. Zhang, S.-Y. Xiang, L. Yang, and D. Zheng, “Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser,” J. Lightwave Technol. 28, 1978–1986 (2010).
[CrossRef]

Yang, L.

Yoshimori, S.

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

Zhang, W.-L.

Zheng, D.

Zhou, Z.

Zou, X. H.

W.-L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett. 33, 237–239(2008).
[CrossRef] [PubMed]

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

Chaos Solitons Fractals (1)

N.-Q. Li, W. Pan, L.-S. Yan, B. Luo, M.-F. Xu, N. Jiang, and Y.-L. Tang, “On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach,” Chaos Solitons Fractals 44, 198–207 (2011).
[CrossRef]

IEEE J. Quantum Electron. (9)

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Private message transmission by common driving of two chaotic lasers,” IEEE J. Quantum Electron. 46, 258–264(2010).
[CrossRef]

A. N. Pisarchik and F. R. Ruiz-Oliveras, “Optical chaotic communication using generalized and complete synchronization,” IEEE J. Quantum Electron. 46, 279–284 (2010).
[CrossRef]

A. Bogris, P. Rizomiliotis, K. E. Chlouverkis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: a secret key for cryptographic applications,” IEEE J. Quantum Electron. 44, 119–124 (2008).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36, 35–39 (2000).
[CrossRef]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38, 1141–1154 (2002).
[CrossRef]

X.-F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42, 953–960 (2006).
[CrossRef]

M. C. Chiang, H. F. Chen, and J. M. Liu, “Experimetal synchronization of mutually coupled semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 41, 1333–1340 (2005).
[CrossRef]

T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsäßer, “ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1162–1170 (2002).
[CrossRef]

N. Shibasaki, A. Uchida, S. Yoshimori, and P. Davis, “Characteristics of chaos synchronization in semiconductor lasers subject to polarization rotated optical feedback,” IEEE J. Quantum Electron. 42, 342–350 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W.-L. Zhang, W. Pan, B. Luo, M. Y. Wang, and X. H. Zou, “Polarization switching and hysteresis of VCSELs with time-varing optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 889–894 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Antonelli, A. Mecozzi, M. Santagiustina, and L. Ursini, “Impairments due to polarization-mode dispersion in chaos-encrypted communication systems,” IEEE Photon. Technol. Lett. 21, 1387–1389 (2009).
[CrossRef]

C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett. 14, 456–458 (2002).
[CrossRef]

Int. J. Bifurcation Chaos Appl. Sci. Eng. (2)

C. W. Wu and L. O. Chua, “A simple way to synchronize chaotic systems with applications to secure communication systems,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 1619–1627 (1993).
[CrossRef]

L. J. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 709–713 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (1)

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005).
[CrossRef]

Opt. Laser Technol. (1)

S.-Y. Xiang, W. Pang, L.-S. Yan, B. Luo, N. Jiang, and K.-H. Wen, “Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers,” Opt. Laser Technol. 42, 674–681(2010).
[CrossRef]

Opt. Lett. (4)

Phys. Lett. A (1)

O. A. Rosso, R. Vicente, and C. R. Mirasso, “Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an information theory approach,” Phys. Lett. A 372, 1018–1023(2008).
[CrossRef]

Phys. Rev. A (3)

T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003).
[CrossRef]

A. Murakami and K. A. Shore, “Chaos-pass filtering in injection-locked semiconductor lasers,” Phys. Rev. A 72, 053810 (2005).
[CrossRef]

D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, “Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection,” Phys. Rev. A 72, 043818 (2005).
[CrossRef]

Phys. Rev. E (3)

A. Gavrielides, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonette, “Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback,” Phys. Rev. E 81, 056209 (2010).
[CrossRef]

D. Rontani, M. Sciamanna, A. Locquet, and D. S. Citrin, “Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks,” Phys. Rev. E 80, 066209 (2009).
[CrossRef]

S. Sivaprakasam and K. A. Shore, “Critical signal strength for effective decoding in diode laser chaotic optical communications,” Phys. Rev. E 61, 5997–5999 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–825 (1990).
[CrossRef] [PubMed]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80, 2249–2252(1998).
[CrossRef]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the theoretical model. DL, TL, and RL are the drive laser, the transmitter laser, and the receiver laser, respectively. ML, microscopic lens; M, mirror; BS, beam splitter; PBS, polarization beam splitter; ISO, optical isolator; NDF, neutral density filter; λ / 2 , half wave plate; cm, CMO; TE-Pol, a polarizer along TE mode direction; TM-Pol, a polarizer along TM mode direction; PD, photodetector.

Fig. 2
Fig. 2

Synchronization performance between the TL and RL as functions of the ratio of the coupling strength to the feedback strength σ / k D and the ratio of the pump current density of the TL to its threshold current density J / Jth (chaotic and nonchaotic regimes are included over the whole parameter space).

Fig. 3
Fig. 3

Synchronization performance between the DL and TL.

Fig. 4
Fig. 4

(a) Temporal waveforms of the TE (upper), TM (middle), and TM (bottom) for the DL, TL, and RL, respectively; the cross correlation coefficients for (b) the TE mode of the DL and the TM mode of the TL, (c) the TE mode of the DL and the TM mode of the RL, and (d) the TM modes of the TL and RL.

Fig. 5
Fig. 5

Power spectra of the TE (upper, black curve), TM (middle, red curve), and TM (bottom, green curve) for the DL, TL, and RL, respectively. For comparison, the curves have been shifted vertically.

Fig. 6
Fig. 6

Correlation peak as a function of the relative mismatch ratio for (1) α (yellow diamonds), (2)  g TE , TM (blue triangles), (3)  N 0 (black squares), (4)  τ TE , TM (green circles), and (5)  τ s (red inverted triangles).

Fig. 7
Fig. 7

Cross correlation coefficient as a function of the detuning between the TL and RL, where Δ f = f TL f RL .

Fig. 8
Fig. 8

Message encryption and decryption process for Bs 1 = 1 Gb / s : (a) original message (upper) and recovered message (lower) and (d) the corresponding eye diagram. Similarly, (b), (e) for Bs 2 = 2.5 Gb / s and (c), (f) for Bs 3 = 5 Gb / s .

Fig. 9
Fig. 9

Message encryption and decryption under parameter mismatch: (a), (d)  Bs = 1 Gb / s , Am = 0.002 , and μ = 0.01 ; (b), (e)  Bs = 1 Gb / s , Am = 0.02 , and μ = 0.01 ; (c), (f)  Bs = 1 Gb / s , Am = 0.02 , and μ = 0.1 .

Fig. 10
Fig. 10

Attack process by Attacker A: (a) temporal waveforms of Channels A (upper) and B (lower), (c) the corresponding cross correlation coefficient, (b), (d) the decryption performance.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ˙ x j ( t ) = 1 2 ( 1 + i α j ) · { g x j [ N j ( t ) N 0 j ] 1 τ x j } E x j ( t ) ,
E ˙ y i ( t ) = 1 2 ( 1 + i α j ) · { g y j [ N j ( t ) N 0 j ] 1 τ y j } E y j ( t ) + k D E x DL ( t τ ) exp [ i ( ω x DL τ Δ ω DL t ) ] + σ j E x DL ( t τ c ) exp [ i ( ω x DL τ c Δ ω j t ) ] ,
N ˙ j ( t ) = J j N j ( t ) τ s j [ N j ( t ) N 0 j ] · { g x j | E x j ( t ) | 2 + g y j | E y j ( t ) | 2 } ,
Δ ω DL = ω TE DL ω TM DL = 2 π ( f TE DL f TM DL ) ,
Δ ω j = ω TE DL ω TM j = 2 π ( f TE DL f TM j ) ,
C 12 = [ I 1 ( t ) I 1 ( t ) ] · [ I 2 ( t ) I 2 ( t ) ] | I 1 ( t ) I 1 ( t ) | 2 · | I 2 ( t ) I 2 ( t ) | 2 ,
Q = P 1 P 0 σ 1 + σ 0 .
μ = Π TL Π RL Π TL ,

Metrics