Abstract

Electro-optic modulation is achieved in devices consisting of single-crystalline thin films of N-benzyl-2-methyl- 4-nitroaniline grown from the melt in the slots of phase modulators based on horizontally slotted silicon waveguides. To the best of our knowledge, this is the first experimental realization of an electro-optically active horizontally slotted silicon waveguide and also the first demonstration of organic crystalline materials being implemented into the slotted silicon photonics technology. The experimentally determined half-wave voltage times length product and the losses are estimated to be Vπ×L=14.7±2V·cm and 10±2.4dB/cm, respectively. The fabrication concept employed here circumvents technological issues present in the context of conventional vertically slotted waveguide structures, since the slots with cross-sectional dimensions of about 1000nm×160nm have been patterned with standard optical photolithography into thermally grown oxide sandwiched between two fusion bonded device silicon layers. In contrast to previously reported vertically slotted silicon waveguides with polymeric slot materials, organic crystalline based devices do not require high-electric-field poling prior to operation and feature an excellent long-term stability of dipole orientation in addition to superior photochemical stability.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Covega Corporation, “40 Gb/s lithium niobate modulators,” http://www.covega.com/.
  2. Avanex Corporation, “Lithium niobate for 40G modulation,” http://www.avanex.com/.
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef] [PubMed]
  4. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef] [PubMed]
  5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [CrossRef] [PubMed]
  6. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
    [CrossRef]
  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
    [CrossRef]
  8. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  9. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  10. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
    [CrossRef]
  11. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
    [CrossRef]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  13. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
    [CrossRef] [PubMed]
  14. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
    [CrossRef]
  15. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
    [CrossRef] [PubMed]
  16. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
    [CrossRef]
  17. L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
    [CrossRef]
  18. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
    [CrossRef] [PubMed]
  19. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
    [CrossRef] [PubMed]
  20. B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
    [CrossRef]
  21. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
    [CrossRef] [PubMed]
  22. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
    [CrossRef]
  23. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
    [CrossRef] [PubMed]
  24. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
    [CrossRef]
  25. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
    [CrossRef] [PubMed]
  26. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310–11327(2008).
    [CrossRef] [PubMed]
  27. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic tuning and modulation of single-crystalline organic microring resonators,” J. Opt. Soc. Am. B 26, 1103–1110(2009).
    [CrossRef]
  28. H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
    [CrossRef]
  29. H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
    [CrossRef]
  30. U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
    [CrossRef]
  31. M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
    [CrossRef]
  32. M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
    [CrossRef]
  33. FIMMWAVE, Photon Design, 34 Leopold Street, Oxford, OX41TW, UK, http://www.photond.com/.
  34. Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
    [CrossRef]
  35. CrystalMaker Software Limited, Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK, http://www.crystalmaker.com/.
  36. H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
    [CrossRef]

2011

2010

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
[CrossRef]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

2009

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic tuning and modulation of single-crystalline organic microring resonators,” J. Opt. Soc. Am. B 26, 1103–1110(2009).
[CrossRef]

2008

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310–11327(2008).
[CrossRef] [PubMed]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

2007

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

2006

Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

2004

2001

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

2000

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

1998

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

1997

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1989

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

Alloatti, L.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Almeida, V. R.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Andreani, L. C.

Aoshima, S.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Baehr-Jones, T.

Baets, R.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
[CrossRef]

Barklund, A.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Barrios, C. A.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Benight, S.

Biaggio, I.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Bogaerts, W.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Bojko, R.

Bonk, R.

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Bortnik, B.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Bösch, M.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

Bosshard, C.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

Brosi, J.-M.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

Chakravarty, S.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, R. T.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Cogdell, R. J.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Dalton, L.

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Davies, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

DeRose, C. T.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Diederich, F.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

Ding, R.

Dinu, R.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Dumon, P.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Enami, Y.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Enquist, P.

Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Fedeli, J.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Fedeli, J.-M.

Ferriere, R.

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

Fetterman, H. R.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Figi, H.

Fort, N.

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

Fountain, G.

Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
[CrossRef]

Fournier, M.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Frank, B.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

Freude, W.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Fujimura, H.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Fujiwara, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Gall, A.

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Goedgebuer, J.-P.

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

Gould, M.

Günter, P.

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic tuning and modulation of single-crystalline organic microring resonators,” J. Opt. Soc. Am. B 26, 1103–1110(2009).
[CrossRef]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310–11327(2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Hao, Y.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Hashimoto, H.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Hillerkuss, D.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Hochberg, M.

Hon, N. K.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Huang, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[CrossRef] [PubMed]

Huang, S.

Hung, Y.-C.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Hunziker, C.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Jazbinšek, M.

Jen, A.

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[CrossRef] [PubMed]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

Jen, A. K.-Y.

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
[CrossRef] [PubMed]

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Jiang, X.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Khurgin, J. B.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Kim, T.-D.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

Kobayashi, T.

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

Koechlin, M.

Koos, C.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Korn, D.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Kuroyanagi, K.

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

Kwon, O.-P.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Kwon, S.-J.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Lai, W.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Lee, B. S.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Leuthold, J.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Li, J.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Li, Y.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Lin, C.-Y.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Lipson, M.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Liu, Y.

Luo, J.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[CrossRef] [PubMed]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Manipatruni, S.

Maruyama, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Mathine, D.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Matsushima, R.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Meier, U.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

Morioka, M.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Norwood, R. A.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Okada, Y.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Okamoto, N.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Palmer, R.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Pan, F.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Penkov, B.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Peyghambarian, N.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

Porte, H.

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Qi, B.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Rezzonico, D.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

Schellinger, T.

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Scherer, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[CrossRef] [PubMed]

Schmidt, B.

Scimeca, M. L.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

Seo, B.-J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Shakya, J.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Solli, D. R.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Steier, W. H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Sugihara, O.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

Sugisaki, M.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Sullivan, P.

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
[CrossRef]

Takahashi, H.

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

Takayesu, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

Tazawa, H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

Tong, Q.-Y.

Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
[CrossRef]

Tsia, K. K.

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Tsuchiya, Y.

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Vallaitis, T.

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Waldow, M.

Wang, G.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Wang, X.

X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Wieland, J.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

Witzens, J.

Xu, Q.

Yamada, T.

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

Yanagi, K.

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

Yang, J.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Yu, H.

Yu, P.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhou, Q.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007).
[CrossRef]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006).
[CrossRef]

Chem. Rev.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010).
[CrossRef]

Electron. Lett.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[CrossRef]

IEEE J. Quantum Electron.

H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010).
[CrossRef]

J. Appl. Phys.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998).
[CrossRef]

J. Chem. Phys.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997).
[CrossRef]

M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006).
[CrossRef]

M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008).
[CrossRef] [PubMed]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[CrossRef] [PubMed]

H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310–11327(2008).
[CrossRef] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[CrossRef] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Proc. IEEE

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[CrossRef]

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Other

N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234.
[CrossRef]

Covega Corporation, “40 Gb/s lithium niobate modulators,” http://www.covega.com/.

Avanex Corporation, “Lithium niobate for 40G modulation,” http://www.avanex.com/.

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197.
[CrossRef]

FIMMWAVE, Photon Design, 34 Leopold Street, Oxford, OX41TW, UK, http://www.photond.com/.

CrystalMaker Software Limited, Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK, http://www.crystalmaker.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a horizontally slotted silicon/ organic hybrid waveguide with crystalline organic BNA as EO active slot material. The single-crystalline BNA with its higher refractive index in comparison to the thermal oxide is responsible for both the guiding of the mode in the horizontal wafer plane and the EO tuning of the guided modes. The crystallographic a and b axes of BNA are parallel to the waveguide and perpendicular to the silicon substrate surface, respectively, and the c axis is perpendicular to the other two crystallographic axes. The doped lower and upper device silicon layers function as the electrodes directly.

Fig. 2
Fig. 2

Modulation efficiency ξ n i of horizontally slotted silicon waveguides with BNA as the active slot material as a function of the grown thermal oxide thickness t Ox (slot height) for three different slot widths w.

Fig. 3
Fig. 3

Schematic of the fabrication process flow.

Fig. 4
Fig. 4

XRD ( θ - 2 θ scan) pattern of a thin-film crystal of BNA. The reflections correspond to a lattice constant normal to the surface of 21.5 ± 0.2 Å .

Fig. 5
Fig. 5

(a) Microscope image of BNA crystals grown from the melt in slots structured into grown thermal oxide, which in turn is sandwiched between two device silicon layers. The crystallographic a and c axes are parallel and perpendicular to the slot, respectively. (b) SEM image of an end-facet of a cleaved horizontally slotted silicon waveguide.

Fig. 6
Fig. 6

Schematic of the electric-field-induced deformation of the index ellipsoid caused by the EO tensor element r 42 in the EO modulation experiments. Also shown are the angles ϱ and δ that indicate the positions of the polarizer and analyzer, respectively.

Fig. 7
Fig. 7

Polar plot of the modulation amplitude measured in a horizontally slotted silicon/organic hybrid phase modulator between crossed polarizers with the analyzer position as the angular variable. The least square theoretical fit (solid curve) based on the function in Eq. (11) is in very good agreement with the experimentally observed modulation amplitude (squares).

Fig. 8
Fig. 8

Modulated light intensity of a horizontally slotted EO silicon waveguide with BNA as crystalline organic slot material detected by a photodiode (solid curve). A triangular modulation voltage (dotted curve) with an amplitude of 31 V and a modulation frequency of 272 Hz was applied to the two device silicon layers separated by about 160 nm thick thermal oxide, where a slot with a width w = 1000 nm was structured and filled with crystalline BNA. The theoretical analysis (dashed curve) based on an ordinary switching curve model according to Eq. (12) shows that the 3 mm long waveguide phase modulator exhibits a half-wave voltage × length product of 14.7 ± 2 V · cm at a wavelength of 1.55 μm . The dashed curve can be obtained by choosing the following parameters in Eq. (12): V π = 49 V , ϕ 0 = 2 π / 3 , V ( t ) = triangle wave , with an amplitude of 31 V and an angular frequency of 2 π · 272 Hz ; I 0 and Δ I are not meaningful because the units on the y axis are arbitrary and because the traces were captured in the a c mode of the oscilloscope.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = n eff n i · Δ n i = ξ n i · Δ n i .
f C = 1 2 π R C = t Ox ( h 0.46 · t Ox ) 2 π ε r ε 0 ρ d 2 .
x 2 n x 2 + y 2 n y 2 + z 2 n z 2 + 2 y z r 42 η E y = 1 ,
y = y cos θ + z sin θ ,
z = y sin θ + z cos θ .
P out = | M A · M WG · J in | 2 .
P out = | M A · M WG · J in | 2 .
M A = ( cos 2 δ cos δ sin δ cos δ sin δ cos 2 δ )
M WG = ( exp ( i ϕ y ) 0 0 exp ( i ϕ z ) )
M WG = ( exp ( i ϕ y ) cos 2 θ ind + exp ( i ϕ z ) sin 2 θ ind ( exp ( i ϕ y ) exp ( i ϕ z ) ) cos θ ind sin θ ind ( exp ( i ϕ y ) exp ( i ϕ z ) ) cos θ ind sin θ ind exp ( i ϕ y ) sin 2 θ ind + exp ( i ϕ z ) cos 2 θ ind )
P out P out = cos 2 ( ϱ θ ind ) cos 2 ( δ θ ind ) cos 2 ( ϱ ) cos 2 ( δ ) + sin 2 ( ϱ θ ind ) sin 2 ( δ θ ind ) sin 2 ( ϱ ) sin 2 ( δ ) + 1 / 2 cos ( ϕ y ϕ z ) sin ( 2 ( ϱ θ ind ) ) sin ( 2 ( δ θ ind ) ) 2 cos ( ϕ y ϕ z ) cos ( ϱ ) cos ( δ ) sin ( ϱ ) sin ( δ ) .
I ( t ) = I 0 + Δ I · cos ( ϕ 0 + π V ( t ) V π ) ,

Metrics