Abstract

The off-resonance Raman spectra of As2S3, GeS2, Ge25Ga5S70, Ge23As12S65, Ge23Sb12S65, and Ge17Ga4Sb10S69 chalcogenide glasses have been recorded and the corresponding Raman gain coefficients have been calculated in order to evaluate the role of Ge, Ga, Sb, and As on a novel Ge17Ga4Sb10S69 glass proposed for highly nonlinear microstructured optical fibers. We calculated the Raman response functions of As2S3 n2=2.3×1017m2/W, G2.78×1011m/W; and Ge17Ga4Sb10S69 n2=1.8×1017m2/W, G1.57×1011m/W glasses. The supercontinuum generation of a three-air-hole Ge17Ga4Sb10S69 fiber was simulated, challenging the properties of a similar fiber design made of As2S3 chalcogenide glass. We calculated the zero dispersion wavelengths of Ge17Ga4Sb10S69 fibers with the core diameters of 1.2, 1.5, and 2.0μm at λ=1.48, 1.66, and 1.75μm in comparison with λ=1.60, 1.87, and 1.98μm obtained for As2S3 fibers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
  2. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
    [CrossRef]
  3. A. Zakery, “Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films,” J. Phys. D 35, 2909–2913(2002).
    [CrossRef]
  4. R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
    [CrossRef]
  5. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18, 19286–19291 (2010).
    [CrossRef] [PubMed]
  6. L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
    [CrossRef]
  7. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [CrossRef] [PubMed]
  8. H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
    [CrossRef]
  9. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
    [CrossRef] [PubMed]
  10. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
    [CrossRef]
  11. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
    [CrossRef] [PubMed]
  12. T. Kohoutek, S. Mizuno, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Third-harmonic generation measurement of nonlinear optical susceptibility χ(3) of Ge-Ga-Sb-S chalcogenide glasses proposed for highly nonlinear photonic fibers,” J. Opt. Soc. Am. B 28, 298–305 (2011).
    [CrossRef]
  13. S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: structural origin by Raman scattering,” Opt. Lett. 36, 534–536 (2011).
    [CrossRef] [PubMed]
  14. J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21, 2323–2330 (2006).
    [CrossRef]
  15. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
    [CrossRef]
  16. V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, “Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach,” J. Opt. Soc. Am. B 23, 2588–2596 (2006).
    [CrossRef]
  17. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
    [CrossRef]
  18. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
    [CrossRef]
  19. F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978).
    [CrossRef]
  20. A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
    [CrossRef]
  21. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
    [CrossRef]
  22. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [CrossRef]
  23. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
    [PubMed]
  24. S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971).
    [CrossRef]
  25. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, 2000).
  26. A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
    [CrossRef]
  27. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
    [CrossRef]
  28. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
    [CrossRef]
  29. L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
    [CrossRef]
  30. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [CrossRef] [PubMed]
  31. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

2011 (3)

2010 (3)

2008 (3)

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[CrossRef] [PubMed]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

2007 (4)

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

2006 (3)

2003 (1)

A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
[CrossRef]

2002 (2)

A. Zakery, “Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films,” J. Phys. D 35, 2909–2913(2002).
[CrossRef]

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
[CrossRef]

2001 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

1999 (1)

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

1997 (1)

1993 (2)

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

1988 (1)

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

1983 (1)

R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
[CrossRef]

1978 (1)

F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978).
[CrossRef]

1971 (1)

S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971).
[CrossRef]

Adam, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, “Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach,” J. Opt. Soc. Am. B 23, 2588–2596 (2006).
[CrossRef]

Aggarwal, I.

L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Andrikopoulos, K. S.

A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
[CrossRef]

Arai, Y.

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Bayya, S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Brady, D. J.

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[CrossRef] [PubMed]

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Brilland, L.

Buchalter, B.

R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
[CrossRef]

Bulla, D.

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Cantrell, C. D.

Chartier, T.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Chochliouros, I. P.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Desevedavy, F.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

Di Domenico, M.

S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971).
[CrossRef]

Domachuk, P.

Doualan, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Duverger-Arfuso, C.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Eggleton, B. J.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

El-Amraoui, M.

Fatome, J.

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Fortier, C.

Fu, L.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Fuerbach, A.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Gadret, G.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef] [PubMed]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Galeener, F. L.

F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978).
[CrossRef]

George, A. K.

Ham, B. S.

Han, T.

Hanzlik, C.

R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
[CrossRef]

Heo, J.

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21, 2323–2330 (2006).
[CrossRef]

Hewak, D.

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

Hewak, D. W.

Hollenbeck, D.

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Houizot, P.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Hu, J.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Jacquier, B.

Jose, R.

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Jules, J. C.

Jurdyc, A. M.

Kalampounias, A. G.

A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
[CrossRef]

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Kibler, B.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Knight, J. C.

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Kohoutek, T.

Kubodera, K.

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Kyriazis, F.

Lamont, M. R. E.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Le Quang, A. Q.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Leperson, J.

Liao, M.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Lines, M. E.

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

Littler, I. C. M.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Luther-Davies, B.

Lyons, K. B.

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

Madden, S.

Mägi, E. C.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Matsumoto, M.

Menyuk, C. R.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Meredith, R.

R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
[CrossRef]

Messaddeq, Y.

Miller, A. E.

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

Misumi, T.

Mizuno, S.

Moizan, V.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Moncorgé, R.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Monteville, A.

Morinaga, K.

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

Nassau, K.

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

Nazabal, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, “Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach,” J. Opt. Soc. Am. B 23, 2588–2596 (2006).
[CrossRef]

Nguyen, H. C.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Nguyen, T.

Nguyen, V.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Niu, Y.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

Ohishi, Y.

T. Kohoutek, S. Mizuno, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Third-harmonic generation measurement of nonlinear optical susceptibility χ(3) of Ge-Ga-Sb-S chalcogenide glasses proposed for highly nonlinear photonic fibers,” J. Opt. Soc. Am. B 28, 298–305 (2011).
[CrossRef]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Omenetto, F. G.

Pelusi, M. D.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Polacchini, C. F.

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Popescu, M. A.

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, 2000).

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Qin, G.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Qin, G. S.

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

Rafael, R. R.

L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[CrossRef]

Renversez, G.

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

Sanghera, J.

L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Schweizer, T.

Sen, P. N.

F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978).
[CrossRef]

Shaw, L. B.

L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Skripatchev, I.

Smektala, F.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef] [PubMed]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef] [PubMed]

Song, J. H.

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21, 2323–2330 (2006).
[CrossRef]

Suzuki, T.

T. Kohoutek, S. Mizuno, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Third-harmonic generation measurement of nonlinear optical susceptibility χ(3) of Ge-Ga-Sb-S chalcogenide glasses proposed for highly nonlinear photonic fibers,” J. Opt. Soc. Am. B 28, 298–305 (2011).
[CrossRef]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Szpulak, M.

Ta’eed, V. G.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Takebe, H.

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

Thielen, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

Traynor, N.

Troles, J.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef] [PubMed]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006).
[CrossRef] [PubMed]

Truong, V. G.

Wang, A.

Wemple, S. H.

S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971).
[CrossRef]

Wolchover, N. A.

Yan, X.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Yannopoulos, S. N.

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: structural origin by Raman scattering,” Opt. Lett. 36, 534–536 (2011).
[CrossRef] [PubMed]

A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
[CrossRef]

Yeom, D. I.

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Zakery, A.

A. Zakery, “Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films,” J. Phys. D 35, 2909–2913(2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007).
[CrossRef]

J. Appl. Phys. (4)

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010).
[CrossRef]

H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[CrossRef]

J. Chem. Phys. (2)

A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003).
[CrossRef]

R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983).
[CrossRef]

J. Mater. Res. (1)

J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21, 2323–2330 (2006).
[CrossRef]

J. Non-Cryst. Solids (2)

H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999).
[CrossRef]

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Phys. D (1)

A. Zakery, “Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films,” J. Phys. D 35, 2909–2913(2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007).
[CrossRef]

Mat. Res. Bull. (1)

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
[CrossRef]

Opt. Quantum Electron. (1)

L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007).
[CrossRef]

Phys. Rev. B (2)

F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978).
[CrossRef]

S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971).
[CrossRef]

Proc. SPIE (1)

L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011).
[CrossRef]

Other (3)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, 2000).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Stokes-side reduced Raman spectra of As 2 S 3 , GeS 2 , Ge 25 Ga 5 S 70 , Ge 23 As 12 S 65 , Ge 23 Sb 12 S 65 , and Ge 17 Ga 4 Sb 10 S 69 chalcogenide glasses and (b) their Raman gain coefficient spectra, both shown in comparison with the spectra of silica glass.

Fig. 2
Fig. 2

Decomposition of the Raman gain coefficient spectrum of Ge 17 Ga 4 Sb 10 S 69 glass by using an appropriate number of Gaussians for each case.

Fig. 3
Fig. 3

Time-domain Raman response functions of As 2 S 3 , Ge 17 Ga 4 Sb 10 S 69 , and silica glasses, showing the slower response of chalcogenide glasses.

Fig. 4
Fig. 4

Chromatic dispersions simulated for three-air-hole MOFs of Ge 17 Ga 4 Sb 10 S 69 and As 2 S 3 glasses. The core diameters were d = 1.2 , 1.5, and 2.0 μm and the appropriate ZDW = 1.47 , 1.66, and 1.75 μm for Ge 20 Ga 5 Sb 10 S 65 fiber, and 1.60, 1.87, and 1.98 μm for As 2 S 3 fiber.

Fig. 5
Fig. 5

SC generation simulated for three-air-hole MOFs of Ge 17 Ga 4 Sb 10 S 69 and As 2 S 3 glasses with core diameters d = 1.2 μm pumped at λ = 1.55 μm . The pulse duration was 400 fs , the fiber length was 10 cm , and the peak power changed as P = 1.5 , 8, 33, and 133 W .

Tables (3)

Tables Icon

Table 1 Refractive Indices of As 2 S 3 , GeS 2 , Ge 25 Ga 5 S 70 , Ge 23 As 12 S 65 , Ge 23 Sb 12 S 65 , and Ge 17 Ga 4 Sb 10 S 69 Chalcogenide Glasses

Tables Icon

Table 2 Peak Raman Gain Coefficients of Chalcogenide Glasses Compared with Their Raman Gain Cross Sections

Tables Icon

Table 3 Nonlinear Coefficients of As 2 S 3 and Ge 17 Ga 4 Sb 10 S 69 MOFs and Their Chromatic Dispersions at λ = 1.55 μm

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R ( ω ) = ω { N ( ω , T ) + 1 } × 1 ( ω 0 ω ) 4 × I expt. ( ω ) ,
F R = ( 1 + n ) 4 n S 2 ( 1 + n S ) 4 n 2 ,
F A = n 2 n S 2 .
G = σ 0 λ s 3 c 2 n 2 ,
λ s = 10 7 ω 0 ω .
σ 0 = σ T 1 + N ( ω , T ) = σ T [ 1 + ( e ω / k B T 1 ) ] 1 .
G = σ T λ s 3 c 2 n 2 [ 1 + ( e ω / k B T 1 ) ] 1 .
R ( t ) = i = 1 N A i exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) sin ( ω υ , i t ) ,
g R ( ω ) i = 1 N A i 2 0 { cos [ ( ω υ , i ω ) t ] cos [ ( ω υ , i + ω ) t ] } × exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) d t .
g R ( ω ) = 2 ω 0 c n 2 f R Im [ R ( ω ) ] ,

Metrics