Abstract

We report on the observation of enhanced four-wave mixing via crossover resonance in a Doppler-broadened cesium vapor. Using a single laser frequency, a resonant parametric process in a double-Λ level configuration is directly excited for a specific velocity class. We investigate this process in different saturation regimes and demonstrate the possibility of generating intensity correlation and anticorrelation between the probe and conjugate beams. A simple theoretical model is developed that accounts qualitatively well to the observed results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
    [CrossRef]
  2. M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
    [CrossRef]
  3. J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
    [CrossRef]
  4. R. L. Abrams and R. C. Lind, “Degenerate 4-wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978).
    [CrossRef] [PubMed]
  5. R. L. Abrams and R. C. Lind, “Degenerate four-wave mixing in absorbing media: errata,” Opt. Lett. 3, 205 (1978).
    [CrossRef] [PubMed]
  6. M. Oria, D. Bloch, M. Ficher, and M. Ducloy, “Efficient phase conjugation of a low-power laser diode in a short Cs vapor cell at 852 nm,” Opt. Lett. 14, 1082–1084 (1989).
    [CrossRef] [PubMed]
  7. M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
    [CrossRef] [PubMed]
  8. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
    [CrossRef]
  9. P. R. Hemmer, D. P. Katz, J. Donioghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
    [CrossRef] [PubMed]
  10. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
    [CrossRef] [PubMed]
  11. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
    [CrossRef] [PubMed]
  12. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
    [CrossRef]
  13. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [CrossRef]
  14. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  15. M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [CrossRef]
  16. M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286(1998).
    [CrossRef]
  17. C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
    [CrossRef]
  18. M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
    [CrossRef]
  19. V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
    [CrossRef]
  20. D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata.
  21. D. Bloch and M. Ducloy, “Theory of saturated line shapes in phase-conjugate emission by resonant degenerate four-wave mixing in Doppler-broadened three-level systems,” J. Opt. Soc. Am. 73, 635–646 (1983).
    [CrossRef]
  22. D. Bloch and M. Ducloy, “Theory of saturated line shapes in phase-conjugate emission by resonant degenerate four-wave mixing in Doppler-broadened three-level systems: errata,” J. Opt. Soc. Am. 73, 1844–1845 (1983).
    [CrossRef]
  23. L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
    [CrossRef]

2007 (3)

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

2006 (1)

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[CrossRef]

2004 (1)

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

2003 (1)

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

2002 (1)

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

2000 (1)

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

1998 (2)

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286(1998).
[CrossRef]

1997 (2)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
[CrossRef]

1995 (1)

1989 (1)

1987 (1)

M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
[CrossRef] [PubMed]

1986 (1)

S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
[CrossRef]

1983 (2)

1978 (2)

Abrams, R. L.

Aguirre-Gómez, J. G.

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

Arimondo, E.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Belthangady, C.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

Bloch, D.

Boyer, V.

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Cardoso, G. C.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

Cronin-Golomb, M.

Cruz, L. S.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Cruz, L. S. D.

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

de Oliveira, F. A. M.

J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
[CrossRef]

S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
[CrossRef]

Donioghue, J.

Du, S.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

Ducloy, M.

Failache, H.

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Felinto, D.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Ficher, M.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Garrido-Alzar, C.

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

Gomez, J. G. A.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

Grynberg, G.

M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
[CrossRef] [PubMed]

Harris, S. E.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Hemmer, P. R.

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286(1998).
[CrossRef]

P. R. Hemmer, D. P. Katz, J. Donioghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Katz, D. P.

Kolchin, P.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

Kumar, P.

LeBoiteux, S.

S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
[CrossRef]

Lett, P. D.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Lezama, A.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Lind, R. C.

Loffler, M.

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Lukin, M. D.

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Martinelli, M.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

McCormick, C. F.

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–180 (2007).
[CrossRef]

Nussenzveig, P.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

Oria, M.

Pinard, M.

M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Santos, M. F.

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

Sautenkov, V. A.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Scully, M. O.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[CrossRef]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

Shahriar, M. S.

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286(1998).
[CrossRef]

P. R. Hemmer, D. P. Katz, J. Donioghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
[CrossRef] [PubMed]

Simoneau, P.

S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
[CrossRef]

Steck, D. A.

D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata.

Tabosa, J. W. R.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
[CrossRef]

Valente, P.

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Verkerk, P.

M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
[CrossRef] [PubMed]

Vianna, S. S.

J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
[CrossRef]

Yin, G. Y.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys. (1)

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

Eur. Phys. J. D (1)

L. S. Cruz, D. Felinto, J. G. A. Gomez, M. Martinelli, P. Valente, A. Lezama, P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D 41, 531–539 (2007).
[CrossRef]

Europhys. Lett. (1)

C. Garrido-Alzar, L. S. D. Cruz, J. G. Aguirre-Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. LeBoiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. Ducloy, “Saturation behavior of resonant degenerate 4-wave and multiwave mixing in Doppler-broadenend regime—experimental analysis on a low-pressure Ne discharge,” IEEE J. Quantum Electron. QE-22, 1229–1247(1986).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158, 273–286(1998).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (5)

M. Pinard, P. Verkerk, and G. Grynberg, “Backward saturation in four-wave mixing in neon: case of cross-polarized pumps,” Phys. Rev. A 35, 4679–4695 (1987).
[CrossRef] [PubMed]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

J. W. R. Tabosa, S. S. Vianna, and F. A. M. de Oliveira, “Nonlinear spectroscopy and optical phase conjugation in cold cesium atoms,” Phys. Rev. A 55, 2968–2972 (1997).
[CrossRef]

M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon–photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. D. Lukin, P. R. Hemmer, M. Loffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[CrossRef]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[CrossRef] [PubMed]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, “Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor,” Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other (1)

D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Geometry of the DBFWM experiment; beams F and P are copropagating, and beam B is counterpropagating with respect to both. Beam C is generated counterpropagating with respect to beam P. (b) Effective four-level atomic system used in the experiment, with the ground levels corresponding to different Zeeman sublevels of the F = 3 hyperfine level of Cs ( 6 S 1 / 2 ) , while the excited states are Zeeman sublevels of the hyperfine F = 2 and F = 3 levels of Cs ( 6 P 3 / 2 ) . F and C have σ + circular polarization, while beams B and P have σ polarization.

Fig. 2
Fig. 2

Experimental setup. PBS, polarizing beam splitter; AOM, acousto-optical modulator.

Fig. 3
Fig. 3

Intensity of the conjugated beam ( I C ) when ω P is scanned around a fixed value of ω F for (a)  ω F = ω 32 , (b)  ω F = ω 32 + 2 π × 38 MHz , and (c)  ω F = ω C O . The powers used for the beams are P F = 100 μW , P B = 0.7 P F , and P P = 150 μW . The same vertical scale was used in all graphs.

Fig. 4
Fig. 4

Intensity of conjugated beam ( I C ) when the frequency ω P is scanned around a fixed value of ω F for (a)  ω F = ω 32 , (b)  ω F = ω 32 + 2 π × 38 MHz , and (c)  ω F = ω C O . The powers used for the beams are P F = 1 mW , P B = 0.7 P F , and P P = 150 μW . The same vertical scale was used in all graphs.

Fig. 5
Fig. 5

Intensity of the conjugated beam while scanning the laser frequency, keeping ω F = ω P = ω B . The pump power is equal to (a)  100 μW , (b)  200 μW , (c)  400 μW , and (d)  2000 μW . The probe power for curves (a)–(d) is P P = 100 μW . The saturated absorption signal used to calibrate the frequency scan is shown in (e).

Fig. 6
Fig. 6

Calculated spectrum for the conjugated-beam intensity as a function of the beam F frequency ( ω F ) for various Rabi frequencies of the pump beams Ω F = Ω B : (a)  Ω F = 0.01 Γ , (b)  Ω F = 0.2 Γ , (c)  Ω F = 0.5 Γ , and (d)  Ω F = 1.0 Γ , where Γ is the excited level decay rate.

Fig. 7
Fig. 7

Time fluctuation of (a) conjugate and (b) probe beam intensities.

Fig. 8
Fig. 8

Normalized correlation spectrum for different laser frequencies (with ω F = ω P = ω B ). The different frequencies analyzed are shown by stars in (g) and (h), where conjugated intensity and saturated absorption signal, respectively, are shown as a function of the scanned laser frequency, common to all fields exciting the sample. The spectra are shown in (a) to (f), providing the fast Fourier transform of the normalized correlation function, as defined in Eq. (10), as a function of the analysis frequency. In (g) and (h) the zero frequency indicates the resonance with the F = 3 F = 2 transition for atoms at rest.

Fig. 9
Fig. 9

Field frequencies in the atomic moving frame for different laser frequencies and atomic velocity classes. (a)  ω F ω 32 and v z = 0 ; (b)  ω F ω C O and v z = v C O = Δ F 2 k .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + V F + V B + V P ,
H 0 = j ω j | j j | ,
V F = Ω F 2 e i ( ω F a t t k F · r ) j | a j | + h . c . ,
V I = Ω I 2 e i ( ω I a t t k I · r ) ( | b c | | b d | ) + h . c . ,
d d t ρ = i [ H , ρ ] + ( r . t . ) .
d d t ρ ( 0 ) = i [ H 0 + V F + V B , ρ ( 0 ) ] + ( r . t . ) ,
d d t ρ ( P ) = i [ H 0 + V F + V B , ρ ( P ) ] i [ V P , ρ ( 0 ) ] + ( r . t . ) ,
ρ i j ( 0 ) = a , b σ i j ( 0 ) , ( a , b ) e i [ ( a ω F a t + b ω B a t ) t ( a k F + b k B ) · r ] ,
ρ i j ( P ) = a , b , c σ i j ( P ) , ( a , b , c ) × e i [ ( a ω P a t + b ω B a t + c ω P a t ) t ( a k P + b k B + c k P ) · r ] ,
G ( 2 ) ( τ ) = δ I C ( t ) δ I P ( t + τ ) [ δ I C ( t ) ] 2 [ δ I P ( t + τ ) ] 2 ,

Metrics