Abstract

Spectral effects of adding metallic layers outside the terahertz (THz) antiresonant reflecting hollow waveguides are investigated in this work. We first examine the one-dimensional case, i.e., the slab-type hollow waveguide. Numerical results indicate that, with metallic coating outside the dielectric claddings, the loss spectrum shifts half-period for the TE mode, but not for the TM mode. Then, we investigate the situation where the metallic layers are moveable off the claddings and calculate the amount of the spectral shift for the TE mode. Finally, the two-dimensional cylindrical hollow waveguide, i.e., the recently proposed THz pipe waveguide, with metallic coating is inspected. It is found that the loss spectrum of the TE01 mode shifts half-period and that of the TM01 mode remains unmoved; while for the HE11 and HE21 modes, their periods become half of the original ones owing to the hybrid-mode nature.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  2. J. A. Harrington, R. George, P. Pedersen, and E. Muller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef] [PubMed]
  3. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  5. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
    [CrossRef]
  6. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
    [CrossRef]
  7. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef] [PubMed]
  9. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
    [CrossRef]
  10. R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
    [CrossRef]
  11. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  12. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
    [CrossRef] [PubMed]
  13. M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  14. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004).
    [CrossRef] [PubMed]
  15. U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
    [CrossRef]
  16. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express 19, 162–167 (2011).
    [CrossRef] [PubMed]
  17. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  18. J. A. Harrington, Infrared Fibers and their Applications (SPIE, 2003).
  19. M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
    [CrossRef]
  20. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [CrossRef]
  21. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
    [CrossRef] [PubMed]
  22. S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
    [CrossRef]
  23. W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009).
    [CrossRef]
  24. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [CrossRef] [PubMed]
  25. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

2011 (1)

2010 (2)

2009 (3)

2008 (3)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

2007 (4)

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

2003 (1)

S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
[CrossRef]

2001 (1)

2000 (1)

1993 (1)

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
[CrossRef]

Abraham, M.

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

Bai, X.-Z.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef] [PubMed]

Chang, H.-C.

Chen, H.-W.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
[CrossRef] [PubMed]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, H.-Z.

Cronin-Golomb, M.

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Dupuis, A.

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Fogarty, G.

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

Gallot, G.

George, R.

Grischkowsky, D.

Harrington, J. A.

Hidaka, T.

Hongo, A.

M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
[CrossRef]

Hsueh, Y.-C.

Huang, Y.-J.

Ichikawa, S.

Ito, H.

Ito, T.

Jamison, S. P.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
[CrossRef]

Koch, T. L.

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kojima, S.

S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Lai, C.-H.

Lederer, F.

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Matsuura, Y.

McGowan, R. W.

Mendis, R.

Minamide, H.

Mitrofanov, O.

Mittleman, D. M.

Miyagi, M.

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
[CrossRef]

Muller, E.

Nishizawa, J.-I.

Nishizawa, S.

S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Pedersen, P.

Peng, J.-L.

Skorobogatiy, M.

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Sun, C.-K.

Sun, W.-F.

W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009).
[CrossRef]

Takeda, E.

Takeda, M. W.

S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
[CrossRef]

Tamura, K.

Tian, Z.-G.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Trutschel, U.

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

Wang, X.-K.

W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009).
[CrossRef]

Wu, C.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

You, B.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004).
[CrossRef] [PubMed]

Yu, R.-J.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zhang, B.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zhang, Y.

W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009).
[CrossRef]

Zhang, Y.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

W.-F. Sun, X.-K. Wang, and Y. Zhang, “Measurement of refractive index for high reflection materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26, 114210(2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. 19, 136–145 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

U. Trutschel, M. Cronin-Golomb, G. Fogarty, F. Lederer, and M. Abraham, “Analysis of metal-clad antiresonant reflecting optical waveguide for polarizer applications,” IEEE Photon. Technol. Lett. 5, 336–339 (1993).
[CrossRef]

J. Lightwave Technol. (2)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
[CrossRef]

J. Mol. Struct. (1)

S. Kojima, M. W. Takeda, and S. Nishizawa, “Terahertz time domain spectroscopy of complex dielectric constants of boson peaks,” J. Mol. Struct. 651–653, 285–288 (2003).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (5)

Opt. Lett. (3)

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

J. A. Harrington, Infrared Fibers and their Applications (SPIE, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structures of the THz antiresonant reflecting hollow waveguides with metallic layers placed outside the dielectric claddings. (a) Metal-coated slab-type hollow waveguide (1D case). (b) Slab-type hollow waveguide with metallic layers movable off the claddings (1D case). (c) Metal-coated cylindrical hollow waveguide (2D case).

Fig. 2
Fig. 2

Loss spectra of the slab-type antiresonant reflecting hollow waveguide with material absorption not considered. (a) Bare case, (b) metal-coated case.

Fig. 3
Fig. 3

Loss spectra of the slab-type antiresonant reflecting hollow waveguide with material absorption considered. (a) Bare case, (b) metal-coated case.

Fig. 4
Fig. 4

Electric field distributions of the bare slab-type antiresonant reflecting hollow waveguide. (a) TE mode at 180 GHz , (b) TE mode at 220 GHz , (c) TM mode at 180 GHz , (d) TM mode at 220 GHz .

Fig. 5
Fig. 5

Electric field distributions of the metal- coated slab-type antiresonant reflecting hollow waveguide. (a) TE mode at 180 GHz , (b) TE mode at 220 GHz , (c) TM mode at 180 GHz , (d) TM mode at 220 GHz .

Fig. 6
Fig. 6

Loss spectra of the slab-type antiresonant reflecting hollow waveguide with metallic layers placed outside the claddings. Only one passband is shown in the figure.

Fig. 7
Fig. 7

Electric field distributions of the slab-type antiresonant reflecting hollow waveguide with metallic layers placed outside the claddings. (a)  d = 200 μm , (b)  d = 400 μm , and (c)  d = 1 , 200 μm .

Fig. 8
Fig. 8

Diagram illustrating the phase relationship in the cladding.

Fig. 9
Fig. 9

Phase terms P t , P i , and P d of the slab-type antiresonant reflecting hollow waveguide with metallic layers placed outside the claddings. (a)  d = 200 μm , (b)  d = 400 μm , and (c)  d = 1 , 200 μm .

Fig. 10
Fig. 10

Spectral shifts of the slab-type antiresonant reflecting hollow waveguide with metallic layers placed outside the claddings.

Fig. 11
Fig. 11

Loss spectra of the bare cylindrical antiresonant reflecting hollow waveguide for the HE 11 , TE 01 , HE 21 , and TM 01 modes.

Fig. 12
Fig. 12

Spectral effects due to metallic coating for the cylindrical antiresonant reflecting hollow waveguide. (a)  HE 11 mode, (b)  TE 01 mode, (c)  HE 21 mode, and (d)  TM 01 mode.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f m = m c 2 t n 2 1 , m = 1 , 2 , 3 , ,
f B = f m + 1 f m = c 2 t n 2 1 .
P t = k c t = 2 π f n cos θ c t ,
P t = 2 π f n 2 1 c t .
P i = cos 1 ( E o E a ) ,
P d = P t P i ,
P d = m π , m = 1 , 2 , 3 ,
P t = m π , m = 1 , 2 , 3 ,
f m = m c 2 t n 2 1 , m = 1 , 2 , 3 ,
f m = f m + P i π f B , m = 1 , 2 , 3 , ,
Δ f = P i π f B .
t m = ( 2 m + 1 ) c 4 f n 2 1 , m = 0 , 1 , 2 ,
t m = c 2 f n 2 1 ( m ± 1 π tan 1 n ( n 2 1 ) 1 / 4 ) , m = 0 , 1 , 2 ,

Metrics