Abstract

We present a new theoretical scheme for an Ho3+-doped athermal high-power continuous-wave amplifier. This approach, with two optical pump sources, allows amplification without detrimental heating. Athermal amplification is achieved by the balance between heating generated during the amplification process, which involves I85 and I75 levels, and laser cooling with anti-Stokes fluorescence, which involves the I85 and I65 levels. For athermal operation, the pump power providing the cooling has to be distributed properly along the length of the amplifier.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746(1929).
    [CrossRef]
  2. S. R. Bowman, “Laser without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
    [CrossRef]
  3. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26, 2237–2241 (2009).
    [CrossRef]
  4. G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
    [CrossRef]
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
    [CrossRef]
  6. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
    [CrossRef]
  7. S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.
  8. A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
    [CrossRef]
  9. C. E. Mungan, “Thermodynamics of radiation-balanced lasing,” J. Opt. Soc. Am. B 20, 1075–1082 (2003).
    [CrossRef]

2010

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

2009

2008

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

2003

1999

S. R. Bowman, “Laser without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

1929

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746(1929).
[CrossRef]

Bowman, S. R.

S. R. Bowman, “Laser without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Epstein, R. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Feldman, B. J.

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.

Felipe, A.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

Gomes, L.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

Jackson, S. D.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

Jenkins, N. W.

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.

Kashyap, R.

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26, 2237–2241 (2009).
[CrossRef]

Librantz, H.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

Messaddeq, Y.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

Mungan, C. E.

C. E. Mungan, “Thermodynamics of radiation-balanced lasing,” J. Opt. Soc. Am. B 20, 1075–1082 (2003).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26, 2237–2241 (2009).
[CrossRef]

O’Connor, S. P.

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746(1929).
[CrossRef]

Ribeiro, S. J. L.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

IEEE J. Quantum Electron.

S. R. Bowman, “Laser without internal heat generation,” IEEE J. Quantum Electron. 35, 115–122 (1999).
[CrossRef]

J. Appl. Phys.

A. Felipe, H. Librantz, S. D. Jackson, L. Gomes, S. J. L. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys. 103, 023105 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–502 (1995).
[CrossRef]

Proc. SPIE

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

Z. Phys.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746(1929).
[CrossRef]

Other

S. R. Bowman, N. W. Jenkins, B. J. Feldman, and S. P. O’Connor, “Demonstration of a radiatively cooled laser,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy level diagram for the Ho 3 + ion showing the amplification and cooling cycles.

Fig. 2
Fig. 2

Structure under consideration. Dotted arrows illustrate anti-Stokes fluorescence.

Fig. 3
Fig. 3

Distribution of the pump and signal powers along the length of the amplifier.

Fig. 4
Fig. 4

Distribution of the volume densities of the active ions in the ground, N 0 , and excited states, N 1 , and N 2 .

Fig. 5
Fig. 5

Distribution of the cooling pump power along the length of the amplifier.

Fig. 6
Fig. 6

Distribution of the cooling pump power along the length of the amplifier for different values of the input pump power providing amplification, P p .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N 2 d t = I p cool λ p cool h c [ σ a ( λ p cool ) N 0 σ e ( λ p cool ) N 2 ] N 2 τ 2 , d N 1 d t = I p λ p h c [ σ a ( λ p ) N 0 σ e ( λ p ) N 1 ] I s λ s h c [ σ e ( λ s ) N 1 σ a ( λ s ) N 0 ] I p cool λ p cool h c σ ESA ( λ p cool ) N 1 N 1 τ 1 + β 21 N 2 τ 2 , N T = N 0 + N 1 + N 2 ,
d I p d z = [ σ a ( λ p ) N 0 + σ e ( λ p ) N 1 ] I p ( z ) , d I s d z = [ σ e ( λ s ) N 1 σ a ( λ s ) N 0 ] I s ( z ) .
I p cool [ N 0 σ a ( λ p cool ) N 2 σ e ( λ p cool ) ] I p [ N 0 σ a ( λ p ) N 1 σ e ( λ p ) ] + I s [ N 1 σ e ( λ s ) N 0 σ a ( λ s ) ] + β 20 h c λ 20 F N 2 τ 2 r + β 21 h c λ 21 F N 2 τ 2 r β 21 N 2 Δ E 21 W n r + h c λ 10 F N 1 τ 1 r = 0 ,

Metrics