Abstract

We study numerically the slow-light capability of insulator–metal–insulator (IMI) plasmonic waveguides. Metal-induced losses are included in the calculation of the dispersion relations, and their effect on the slow-light properties of the waveguide is investigated. In addition to reducing the propagation lengths of surface plasmon polaritons, losses are found to limit the achievable slowdown factors and the practical potential of the device. To alleviate the problem, we consider active materials. Using realistic parameters, we find that a spectral region is then formed where a slow-light pulsed signal can achieve infinite propagation lengths or be amplified. The optical buffering capabilities of the IMI waveguide with losses are analyzed, and we conclude that while losses limit the buffering capabilities of the passive device, the use of active materials may combat the problem effectively from an application point of view.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
    [CrossRef]
  2. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  5. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
    [CrossRef]
  6. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
    [CrossRef]
  9. B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  10. P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
    [CrossRef]
  11. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
    [CrossRef] [PubMed]
  12. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007).
    [CrossRef]
  13. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010)
    [CrossRef] [PubMed]
  14. E. P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow-light dark solitons in insulator-insulator-metal plasmonic waveguides,” J. Opt. Soc. Am. B 27, 1701–1706 (2010).
    [CrossRef]
  15. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  16. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  17. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
    [CrossRef]
  18. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
    [CrossRef] [PubMed]
  19. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
    [CrossRef]
  20. Y. Zhang, X. Zhang, T. Mei, and M. Fiddy, “Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases,” Opt. Express 18, 12213–12225 (2010).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley & Sons, 2002).
    [CrossRef]
  22. D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10, 208–215 (1956).
    [CrossRef]
  23. R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
    [CrossRef]
  24. A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
    [CrossRef]
  25. L. Brillouin, Wave Propagation and Group Velocity(Academic, 1960).
  26. A. Dogariu, A. Kuzmich, H. Cao, and L. Wang, “Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium,” Opt. Express 8, 344–350 (2001).
    [CrossRef] [PubMed]
  27. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  28. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [CrossRef] [PubMed]
  29. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef] [PubMed]

2011 (2)

R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
[CrossRef]

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

2010 (5)

2009 (2)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

2008 (1)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

2007 (2)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007).
[CrossRef]

2005 (4)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

2004 (2)

2002 (1)

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

2001 (1)

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997 (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1986 (1)

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

1956 (1)

D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10, 208–215 (1956).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley & Sons, 2002).
[CrossRef]

Arsenin, A. V.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Berini, P.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boardman, A. D.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Boltasseva, A.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[CrossRef]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity(Academic, 1960).

Cao, H.

Chang-Hasnain, C. J.

Cooper, G. S.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Davoyan, A. R.

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Dogariu, A.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Fainman, Y.

Fedyanin, D. Yu.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Fiddy, M.

Fitrakis, E. P.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gladun, A. D.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef] [PubMed]

Kamalakis, T.

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

Katsuragawa, M.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Kim, K.-Y.

Kivshar, Y. S.

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Ku, P.-C.

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007).
[CrossRef]

Kuzmich, A.

Laude, V.

R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
[CrossRef]

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Le Kien, F.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Lee, B.

Lee, I.-M.

Lee, S.-Y.

Leiman, V. G.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

Liu, Wei

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maradudin, A. A.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Mei, T.

Min, C.

Miroshnichenko, A. E.

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Moiseyenko, R. P.

R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
[CrossRef]

Müller, D. E.

D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10, 208–215 (1956).
[CrossRef]

Mysyrowycz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Na, H.

Naik, G. V.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[CrossRef]

Nezhad, M. P.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Park, J.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shadrivov, I. V.

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shen, T. P.

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef] [PubMed]

Sphicopoulos, T.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Tetz, K.

Tournois, P.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Tucker, R. S.

Veronis, G.

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Wang, L.

Yang, L.

Zhang, X.

Zhang, Y.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Math. Tables Other Aids Comput. (1)

D. E. Müller, “A method for solving algebraic equations using an automatic computer,” Math. Tables Other Aids Comput. 10, 208–215 (1956).
[CrossRef]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef] [PubMed]

Nat. Photon. (2)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1, 573–576 (2007).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Photon. Nanostruct. Fundam. Appl. (1)

A. R. Davoyan, Wei Liu, A. E. Miroshnichenko, I. V. Shadrivov, Y. S. Kivshar, and S. I. Bozhevolnyi, “Mode transformation in waveguiding plasmonic structures,” Photon. Nanostruct. Fundam. Appl. 9, 207–212, doi:10.1016/j.photonics.2011.01.002 (2011).
[CrossRef]

Phys. Rev. A (1)

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Phys. Rev. B (4)

A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowycz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow-light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi RRL (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[CrossRef]

Quantum Electron. (1)

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley & Sons, 2002).
[CrossRef]

L. Brillouin, Wave Propagation and Group Velocity(Academic, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The IMI device (not drawn to scale) is made of a negative-permittivity film sandwiched between two positive- permittivity materials. It supports asymmetric (AS) and symmetric (S) modes, depending on the parity of the electromagnetic field. The pulsed signal propagates along the x axis. The distribution of the longitudinal electric field ( E x ) is drawn qualitatively for each of the modes. In this work, we assume ϵ 2 = ϵ 3 .

Fig. 2
Fig. 2

(a) Dispersion relation for the S mode (solid green/lower right curve) and the AS mode (blue/upper solid curves) in the lossless case. The AS mode exhibits a point of zero group velocity at the highest allowed frequency (at the right end of the upper right curve). To the left of this point lies the slow-light regime, presented by a curve of double thickness. The dispersion curve of the AS mode discontinues at this point, as the mode index turns negative; the curve is thus “transferred” to the left side of the diagram. The dashed curves are drawn as a guide to the eye. The right axis shows the inverse wavelength. (b) Group velocity, normalized to the speed of light in free space, for the positive-index AS mode in the lossless IMI device, with respect to normalized frequency.

Fig. 3
Fig. 3

(a) Real part of the propagation constant for the AS mode of the IMI device with metal-induced losses ( Γ = 1.4 × 10 13 rad / s ). The blue (right) curve corresponds to the positive-index mode, while the red (left) curve corresponds to the negative-index mode. (b) The blue/solid curve presents the real part of the propagation constant for the AS mode of the IMI device with metal-induced losses ( Γ = 1.4 × 10 13 rad / s ). Only the positive-index mode is presented here. The black/dashed curve presents the propagation constant of the lossless case for comparison. (c) Imaginary part of the propagation constant for the AS mode in the IMI device with metal-induced losses. The blue (left) curve corresponds to the positive-index mode, while the red (right) curve corresponds to the negative-index mode.

Fig. 4
Fig. 4

(a) Semilogarithmic plot (base 10) for the propagation length L of the positive-index AS mode in the IMI device with metal-induced losses (red curve/L) and when active materials are used (blue curve/A). L 0 = 1 μm . In the case with active materials, the propagation length goes to infinity at ω / ω p 0.4014 ( 1606.724 nm ), where the imaginary part of the propagation constant vanishes. For λ 1606.724 nm , the device operates as an amplifier. (b) Normalized group velocity for the positive-index AS mode with metal-induced losses (red curve/L) and active materials (blue curve/A). In both cases, group velocity goes on to infinity and then turns negative (not shown in the figure). The group velocity does not represent the signal velocity at superluminal values (see text).

Fig. 5
Fig. 5

(a) Real part of the propagation constant for the positive-index AS mode when active materials are used (blue/solid curve). Black/dashed curve presents the data for the lossy case for comparison. (b) Imaginary part of the propagation constant for the positive-index AS mode when active materials are used (blue/solid curve). In this case, β im = 0 for λ 1606.724 nm . Black/dashed curve presents the data for the lossy case (without active materials) for comparison. The black/dashed curve never crosses the β im = 0 axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tan h ( k 1 a ) = k 2 ϵ 1 k 1 ϵ 2 ,
tan h ( k 1 a ) = k 1 ϵ 2 k 2 ϵ 1 ,
ϵ 1 = ϵ ω p 2 ω 2 + i ω Γ ,
Δ x = T d 1 v g 1 c 0 = p B R ( 1 v g 1 c 0 ) ,

Metrics