Abstract

Recent studies of azo-dye-doped liquid crystal elastomers show a strong photomechanical response. We report on models that predict experimental results that suggest photothermal heating is the dominant mechanism in a planar constrained geometry. We compare our models with experiments to determine key material parameters, which are used to predict the dynamical response as a function of intensity. We show that a local strain from photothermal heating and a nonlocal strain from thermal diffusion is responsible for the observed length changes over time. This work both elucidates the fundamental mechanisms and provides input for the design of photomechanical optical devices, which have been shown to have the appropriate properties for making smart materials.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
    [CrossRef] [PubMed]
  2. C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
    [CrossRef] [PubMed]
  3. C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
    [CrossRef] [PubMed]
  4. M. L. Dunn and K. Maute, “Photomechanics of blanket and patterned liquid crystal elastomer films,” Mech. Mater. 41, 1083–1089 (2009).
    [CrossRef]
  5. K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
    [CrossRef]
  6. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
    [CrossRef]
  7. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
    [CrossRef]
  8. A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).
  9. K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).
  10. K. Uchino, “Photostrictive actuator,” in IEEE 1990 Ultrasonics Symposium, Proceedings (IEEE, 1990), Vol. 2, pp. 721–723.
  11. K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
    [CrossRef]
  12. D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
    [CrossRef]
  13. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol.  117 of Optical Science and Engineering (CRC Press, 2006).
    [CrossRef]
  14. D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
    [CrossRef]
  15. D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
    [CrossRef]
  16. S. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye-doped polymer fibers,” J. Opt. Soc. Am. B 23, 697–708 (2006).
    [CrossRef]
  17. D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
    [CrossRef]
  18. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
    [CrossRef] [PubMed]
  19. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
    [CrossRef] [PubMed]
  20. D. Corbett and M. Warner, “Linear and nonlinear photoinduced deformations of cantilevers,” Phys. Rev. Lett. 99, 174302 (2007).
    [CrossRef] [PubMed]
  21. M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.
  22. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers(Oxford University Press, 2005).
  23. J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
    [CrossRef]
  24. G. Barbero and L. R. Evangelista, “Concentration dependence of the scalar order parameter in liquid-crystalline systems with variable molecular shape,” Phys. Rev. E 61, 2749–2752(2000).
    [CrossRef]
  25. W. Maier and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).
  26. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).
  27. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).
  28. L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
    [CrossRef]

2011 (2)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

2010 (1)

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

2009 (3)

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
[CrossRef] [PubMed]

M. L. Dunn and K. Maute, “Photomechanics of blanket and patterned liquid crystal elastomer films,” Mech. Mater. 41, 1083–1089 (2009).
[CrossRef]

2007 (2)

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

D. Corbett and M. Warner, “Linear and nonlinear photoinduced deformations of cantilevers,” Phys. Rev. Lett. 99, 174302 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

S. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye-doped polymer fibers,” J. Opt. Soc. Am. B 23, 697–708 (2006).
[CrossRef]

2004 (1)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[CrossRef]

2001 (1)

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

2000 (1)

G. Barbero and L. R. Evangelista, “Concentration dependence of the scalar order parameter in liquid-crystalline systems with variable molecular shape,” Phys. Rev. E 61, 2749–2752(2000).
[CrossRef]

1996 (1)

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

1995 (1)

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

1994 (1)

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

1993 (1)

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).

1980 (1)

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

1960 (1)

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

1959 (1)

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

1958 (1)

W. Maier and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

1881 (1)

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Barbero, G.

G. Barbero and L. R. Evangelista, “Concentration dependence of the scalar order parameter in liquid-crystalline systems with variable molecular shape,” Phys. Rev. E 61, 2749–2752(2000).
[CrossRef]

Bastiaansen, C. W. M.

C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
[CrossRef] [PubMed]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Bian, S.

Broer, D. J.

C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
[CrossRef] [PubMed]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

Bunning, T. J.

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Corbett, D.

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

D. Corbett and M. Warner, “Linear and nonlinear photoinduced deformations of cantilevers,” Phys. Rev. Lett. 99, 174302 (2007).
[CrossRef] [PubMed]

Cross, E. L.

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

Cviklinski, J.

J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[CrossRef]

Dawson, N. J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Dunn, M. L.

M. L. Dunn and K. Maute, “Photomechanics of blanket and patterned liquid crystal elastomer films,” Mech. Mater. 41, 1083–1089 (2009).
[CrossRef]

Evangelista, L. R.

G. Barbero and L. R. Evangelista, “Concentration dependence of the scalar order parameter in liquid-crystalline systems with variable molecular shape,” Phys. Rev. E 61, 2749–2752(2000).
[CrossRef]

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Harris, K. D.

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

Ikeda, T.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
[CrossRef] [PubMed]

Koerner, H.

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

Kuzyk, M. G.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

S. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye-doped polymer fibers,” J. Opt. Soc. Am. B 23, 697–708 (2006).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol.  117 of Optical Science and Engineering (CRC Press, 2006).
[CrossRef]

M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.

Lee, K. M.

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

Luchette, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Maier, W.

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

Maute, K.

M. L. Dunn and K. Maute, “Photomechanics of blanket and patterned liquid crystal elastomer films,” Mech. Mater. 41, 1083–1089 (2009).
[CrossRef]

Nakano, M.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
[CrossRef] [PubMed]

Neal, J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

Nishikawa, E.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Palffy-Muhoray, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer,” J. Opt. Soc. Am. B 28, 1916–1921 (2011).
[CrossRef]

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Pereira, G. G.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Qi-Shun, S.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

Robinson, D.

Saupe, A.

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Tajbakhsh, A. R.

J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[CrossRef]

Terentjev, E. M.

J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[CrossRef]

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers(Oxford University Press, 2005).

Uchino, K.

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

K. Uchino, “Photostrictive actuator,” in IEEE 1990 Ultrasonics Symposium, Proceedings (IEEE, 1990), Vol. 2, pp. 721–723.

Vaia, R. A.

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

van Oosten, C. L.

C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
[CrossRef] [PubMed]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

Warner, M.

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

D. Corbett and M. Warner, “Linear and nonlinear photoinduced deformations of cantilevers,” Phys. Rev. Lett. 99, 174302 (2007).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers(Oxford University Press, 2005).

Welker, D. J.

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

White, T. J.

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

Xiang, L.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

Yan-Fang, Y.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

Yu, Y.

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
[CrossRef] [PubMed]

Zhuang-Qi, C.

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry–Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

Chin. Phys. (1)

L. Xiang, C. Zhuang-Qi, S. Qi-Shun, and Y. Yan-Fang, “Study on the thermo-optic properties of DR1/PMMA composite,” Chin. Phys. 15, 2439–2444 (2006).
[CrossRef]

Eur. Phys. J. E (2)

J. Cviklinski, A. R. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[CrossRef]

C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J. Broer, “Glassy photomechanical liquid-crystal network actuators for microscale devices,” Eur. Phys. J. E 23, 329–336 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

Liq. Cryst. (1)

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

Macromolecules (1)

K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, “Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks,” Macromolecules 43, 8185–8190 (2010).
[CrossRef]

Mech. Mater. (1)

M. L. Dunn and K. Maute, “Photomechanics of blanket and patterned liquid crystal elastomer films,” Mech. Mater. 41, 1083–1089 (2009).
[CrossRef]

MRS Bull. (1)

K. Uchino, “Ceramic actuators: principles and applications,” MRS Bull. 29, 42–48 (1993).

Nat. Mater. (2)

C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia from liquid-crystal network actuators modularly driven by light,” Nat. Mater. 8, 677–682 (2009).
[CrossRef] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Nature (1)

Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425, 145 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Phys. Rev. E (1)

G. Barbero and L. R. Evangelista, “Concentration dependence of the scalar order parameter in liquid-crystalline systems with variable molecular shape,” Phys. Rev. E 61, 2749–2752(2000).
[CrossRef]

Phys. Rev. Lett. (2)

D. Corbett and M. Warner, “Linear and nonlinear photoinduced deformations of cantilevers,” Phys. Rev. Lett. 99, 174302 (2007).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Proc. Am. Assoc. Adv. Sci. (1)

A. G. Bell, “On the production and reproduction of sound by light,” Proc. Am. Assoc. Adv. Sci. 29, 115–136 (1881).

Z. Naturforsch. A (3)

W. Maier and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

Other (4)

M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.

M. Warner and E. M. Terentjev, Liquid Crystal Elastomers(Oxford University Press, 2005).

K. Uchino, “Photostrictive actuator,” in IEEE 1990 Ultrasonics Symposium, Proceedings (IEEE, 1990), Vol. 2, pp. 721–723.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol.  117 of Optical Science and Engineering (CRC Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the POD used to measure the LCE’s length change by detecting changes in the interference pattern of the probe beam.

Fig. 2
Fig. 2

Chemical structures of the silicon backbone, trifunctional crosslinker, mesogenic side chain, and DO3 dopant chromophore that are used to construct the dye-doped LCEs.

Fig. 3
Fig. 3

Liquid crystal elastomer illuminated by a 488 nm wavelength laser, where the direction of light propagation is parallel to the director orientation. The gradient represents laser light absorption.

Fig. 4
Fig. 4

Sections of an LCE (top) before and (bottom) after turning on the laser. The sections decrease by a length, Δ L i , at position x i .

Fig. 5
Fig. 5

Calculated temperature change due to heating by absorption of a 36 mW laser over the surface of a 400 μm LCE initially at room temperature. The middle peak corresponds to the position of the LCE, while the broader wings correspond to the glass substrate.

Fig. 6
Fig. 6

Change in temperature for an experimental run lasting 40 s (points) and the numerical calculation (curves) using the parameters shown in Table 1. The time scale is logarithmic.

Fig. 7
Fig. 7

(a) Length contraction of an LCE for a series of incident laser powers as a function of time after the laser is turned on, and (b) the length relaxation when the laser is turned off after being illuminated for 5 min . The theory curves use the parameters shown in Table 1.

Tables (1)

Tables Icon

Table 1 LCE Parameters

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e ϵ c A l ,
d N ( x , t ) d t = ξ N ( x , t ) I ( x , t ) + β ( N eq N ( x , t ) ) ,
d d t N ( x , t ) = ξ N ( x , t ) I 0 exp [ μ 0 x N ( x , t ) d x ] + β ( N eq N ( x , t ) ) ,
d N d t = ξ I N + β ( 1 2 N ) ,
σ p = Δ L p L 0 ,
σ p ( x , t ) = b ( N eq N ) ,
d d t T ( x , t ) K LCE d 2 d x 2 T ( x , t ) = H s ( x , t ) ,
k LCE d d n x T ( x , t ) | x = 0 = f 1 ( t ) ,
k LCE d d n x T ( x , t ) | x = L 0 = f 2 ( t ) ,
T ( x , 0 ) = g ( x ) ,
d d n x T LCE ( x , t ) | x = 0 = C 1 k LCE [ T LCE ( 0 , t ) T glass ( 0 , t ) ] ,
d d n x T LCE ( x , t ) | x = L 0 = C 2 k LCE [ T LCE ( L 0 , t ) T glass ( L 0 , t ) ] .
H s ( x , t ) = d d t T LCE ( x , t ) K LCE d 2 d x 2 T LCE ( x , t ) ,
d d n x T LCE ( x , t ) | x = 0 = C k LCE [ T LCE ( 0 , t ) T glass ( 0 , t ) ] ,
d d n x T LCE ( x , t ) | x = L 0 = C k LCE [ T LCE ( L 0 , t ) T glass ( L 0 , t ) ] ,
T LCE ( x , 0 ) = 0.
H s ( x , t ) = ζ N ( x , t ) I ( x , t ) .
d I ( x , t ) = μ I ( x , t ) N ( x , t ) d x ,
I ( x , t ) N ( x , t ) = 1 μ d d x I ( x , t ) .
H s ( x , t ) = α d d x I ( x , t ) .
α d I ( x , t ) d x = d d t T LCE ( x , t ) K LCE d 2 d x 2 T LCE ( x , t ) ,
d d t T glass ( x , t ) = K glass d 2 d x 2 T glass ( x , t ) ,
d d n x T glass ( x , t ) | x = L g = h k glass T glass ( L g , t ) ,
d d n x T glass ( x , t ) | x = 0 = C k glass [ T glass ( 0 , t ) T LCE ( 0 , t ) ] ,
T glass ( x , 0 ) = 0 ,
σ t = Δ L t L 0 ,
σ t ( x , t ) = q [ T ( x , t ) T ( x , 0 ) ] ,
σ ( x , t ) = σ t ( x , t ) + σ p ( x , t ) .
σ avg Δ L L 0 for     Δ L L 0 ,
Δ L i = σ ( x i ) Δ x .
Δ L = i = 0 σ ( x i ) Δ x .
Δ L = 0 L 0 σ ( x , t ) d x .
d d t N ( x , t ) = β ( N eq N ( x , t ) ) ,
d d t T LCE ( x , t ) = K LCE d 2 d x 2 T LCE ( x , t ) ,
d d n x T LCE ( x , t ) | x = 0 = C k LCE [ T LCE ( 0 , t ) T glass ( 0 , t ) ] ,
d d n x T LCE ( x , t ) | x = L 0 = C k LCE [ T LCE ( L 0 , t ) T glass ( L 0 , t ) ] ,
T LCE ( x , 0 ) = G ( x ) ,
σ ( x , t ) σ t ( x , t ) .
I ( t ) I max = 1 1 + F sin 2 ( 2 π λ ( Δ L ( t ) + L 0 ) ) ,

Metrics