Abstract

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600h. The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773(1997).
    [CrossRef]
  2. T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
    [CrossRef]
  5. G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Optics Commun. 208, 329–335 (2002).
    [CrossRef]
  6. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
    [CrossRef]
  7. T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
    [CrossRef]
  8. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, “Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber,” Opt. Lett. 31, 2675–2677 (2006).
    [CrossRef] [PubMed]
  9. G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27, 1013–1015 (2002).
    [CrossRef]
  10. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–629 (2004).
    [CrossRef]
  11. W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  12. H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
    [CrossRef]
  13. A. A. Fotiadi, G. Brambilla, T. Ernst, S. A. Slattery, and D. N. Nikogosyan, “TPA-induced long-period gratings in a photonic crystal fiber: inscription and temperature sensing properties,” J. Opt. Soc. Am. B 24, 1475–1481 (2007).
    [CrossRef]
  14. E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
    [CrossRef]
  15. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
    [CrossRef]
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [CrossRef]
  17. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
    [CrossRef]
  18. T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
    [CrossRef]
  19. T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
    [CrossRef]
  20. T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
    [CrossRef]
  21. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
    [CrossRef]
  22. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
    [CrossRef]
  23. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
    [CrossRef]
  24. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314(2004).
    [CrossRef] [PubMed]
  25. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
    [CrossRef]
  26. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001).
    [CrossRef]
  27. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air silica microstructure fiber,” Opt. Lett. 29, 38–40 (2004).
    [CrossRef] [PubMed]
  28. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
    [CrossRef]
  29. M. Sakakura, M. Terazima, Y. Shimotsumal, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007).
    [CrossRef] [PubMed]
  30. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997).
    [CrossRef]
  31. G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.
  32. C. W. Smelser, S. J. Mihailov, and D. Grobnic “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005).
    [CrossRef] [PubMed]
  33. COMSOL, “COMSOL multiphysics,” http://www.comsol.com.
  34. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fibre: the photo-inscription of gratings,” Opt. Express 15, 7876–7887 (2007).
    [CrossRef] [PubMed]

2009 (1)

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

2008 (4)

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

2007 (6)

2006 (5)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
[CrossRef]

G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, “Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber,” Opt. Lett. 31, 2675–2677 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (5)

2003 (2)

W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

2002 (3)

2001 (1)

1999 (1)

1997 (2)

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773(1997).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997).
[CrossRef]

1996 (1)

Allsop, T.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Asatryan, A. A.

Bennion, I.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Bhardwaj, V. R.

Bhatia, V.

Birks, T. A.

Borrelli, N. F.

Botten, L. C.

Brambilla, G.

Canning, J.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Chin, S. L.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Corkum, P. B.

Dianov, E.

Dobb, H.

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

Dubov, M.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

Ernst, T.

Evans, S. C.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Février, S.

Fotiadi, A. A.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997).
[CrossRef]

Grobnic, D.

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hansen, K.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Herrmann, H. W.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Hirao, K.

Hnatovsky, C.

Horsfield, C. J.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Humbert, G.

James, W. S.

W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Jamison, A. O.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Kakarantzas, G.

Kalli, K.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.

Kan, D. J.

Komodromos, M.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

Lægsgaard, J.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Lai, Y.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Mack, J. M.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Macrum, G. S.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Main, A.

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

Malki, A.

Marshall, G. D.

Martinez, A.

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997).
[CrossRef]

McKenna, I. J.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Mezentsev, V. K.

Mihailov, S. J.

Miller, E. K.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Miura, K.

Miyake, Y.

Morishita, K.

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nikogosyan, D. N.

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Okhotnikov, O.

Pagnoux, D.

Petrovic, J. S.

Ponader, C. W.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
[CrossRef]

Rayner, D. M.

Rego, G.

Roy, P.

Russell, P. S. J.

Sakakura, M.

Saliminia, A.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

Schroeder, J. F.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
[CrossRef]

Sedillo, T. J.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Shimotsumal, Y.

Simova, E.

Slattery, S. A.

Smelser, C. W.

Smith, G.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

Smith, G. N.

G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.

Sørensen, H. R.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Spälter, S.

Strasser, T. A.

Streltsov, A. M.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
[CrossRef]

A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
[CrossRef]

Sugden, K.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.

Sulimov, V.

Tatam, P. R.

W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Taylor, R. S.

Terazima, M.

Tikhonchuk, V.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Vallee, R.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Varming, P.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Vengsarkar, A. M.

Webb, D. J.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25, 1306–1312 (2007).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
[CrossRef]

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Withford, M. J.

Young, C. S.

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

Zhou, K.

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

Appl. Phys. Lett. (2)

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–885 (1997).
[CrossRef]

Electron. Lett. (1)

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657–658 (2004).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

E. K. Miller, G. S. Macrum, I. J. McKenna, H. W. Herrmann, J. M. Mack, C. S. Young, T. J. Sedillo, S. C. Evans, and C. J. Horsfield, “Accuracy of analog fiber-optic links in pulsed radiation environments,” IEEE Trans. Nucl. Sci. 54, 2457–2462(2007).
[CrossRef]

J. Appl. Phys. (2)

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103, 063516 (2008).
[CrossRef]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallee, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

W. S. James and P. R. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Opt. Lett. (6)

Opt.Commun. (1)

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt.Commun. 270, 207–210 (2007).
[CrossRef]

Optics Commun. (3)

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors,” Optics Commun. 281, 5092–5096 (2008).
[CrossRef]

G. Humbert and A. Malki, “Characterizations at very high temperature of electric arc-induced long-period fiber gratings,” Optics Commun. 208, 329–335 (2002).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Optics Commun. 260, 184–191 (2006).
[CrossRef]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void Formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Proc. SPIE (3)

T. Allsop, M. Dubov, H. Dobb, A. Main, A. Martinez, K. Kalli, D. J. Webb, and I. Bennion, “A comparison of the spectral properties of high temperature annealed long-period gratings inscribed by fs laser, UV, and fusion-arc,” Proc. SPIE 6193, 61930M(2006).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, M. Dubov, Y. Lai, D. J. Webb, and I. Bennion, “Annealing and spectral characteristics of femtosecond laser inscribed long period gratings written into a photonic crystal fibre,” Proc. SPIE 7004, 70044I (2008).
[CrossRef]

T. Allsop, K. Kalli, K. Zhou, G. Smith, M. Komodromos, K. Sugden, M. Dubov, D. J. Webb, and I. Bennion, “Comparison between femtosecond laser and fusion-arc inscribed long period gratings in photonic crystal fibre,” Proc. SPIE 7357, 73570J(2009).
[CrossRef]

Other (2)

COMSOL, “COMSOL multiphysics,” http://www.comsol.com.

G. N. Smith, K. Kalli, and K. Sugden, “Advances in femtosecond micromachining and inscription of micro and nano photonic devices,” in Frontiers in Guided Wave Optics and OptoelectronicsB.Pal, ed. (InTech, 2010), Chap. 15, p. 674.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the inscription setup. The light passes through a (1) shutter, (2) half-wave plate, (3) Glan prism, (4) × 100 long working distance microscopic objective, (6) and is then focused into the fiber core. (5) Two three-dimensional alignment translation stages were mounted onto a (7) two-dimensional Aerotech CNC air bearing stage. (8) Two CCD cameras were used for alignment and online monitoring of the inscription process. (b) A schematic of the apparatus used to investigate the transmission spectra of the LPGs during fabrication.

Fig. 2
Fig. 2

(a) Polarization dependence of the transmission spectra of the fs-laser inscribed LPG in the PCF (ESM) with a period of 400 μm , inscription energy of 650 nJ , and length of 10.0 mm . Polarization changes from 0 ° to 180 ° . (b) Maximum variation of the polarization dependent transmission spectra of an LPG in the PCF (ESM) with a period of 400 μm , inscription energy of 510 nJ , and length of 7.2 mm . (c) Maximum variation of birefringence versus inscription energy.

Fig. 3
Fig. 3

Fabrication of LPGs in ESM-1550-01 (outside diameter of 125 μm , core diameter of 12 μm , 54 holes with diameters of 3.7 μm , diameter of the holey region is 60 μm , space between the adjacent holes is 8 μm ) using the electric arc and fs laser. Shown is the fiber cross section for (a) before electric arc exposure, (b) after electric arc exposure using a fusion splicer (Fitel S175-V2000 set to 950 ms arc duration and 87 arc power level), showing small but significant changes in the fiber cross section, (c) fs inscription at 410 nJ / pulse (initial signs of damage), (d) fs inscription at 590 nJ / pulse (discoloration and fracture), and (e) fs inscription at 650 nJ / pulse (discoloration and greater fracture).

Fig. 4
Fig. 4

Example of the postfabrication spectral evolution of the (a) peak wavelength and (b) coupling strength of a fs-laser inscribed LPG in the PCF with a period of 400 μm , laser pulse energy of 580 nJ , and length of 7 mm .

Fig. 5
Fig. 5

(a) Wavelength shifts of fs-laser inscribed LPGs in the PCFs at room temperature. Pulse energies used to inscribe the LPG were (▴) 410 nJ , (×) 450 nJ , (♦) 510 nJ , (•) 550 nJ , (▪) 560 nJ , and (▬) 650 nJ .(b) The observed resultant wavelength shift after room temperature annealing as a function of inscription energy. (c) The time taken to reach maximum wavelength shift as a function of inscription energy.

Fig. 6
Fig. 6

Change in the coupling strength of the fs-laser inscribed LPGs in the PCFs at room temperature. Pulse energies used to inscribe the LPG were (▴) 410 nJ , (♦) 510 nJ , (•) 550 nJ , (▪) 560 nJ , and (▬) 650 nJ .

Fig. 7
Fig. 7

Examples of the spectral variation of (a) the central wavelength of an attenuation band and (b) optical strength of fs-laser fabricated LPGs in the PCF as a function of time at 100 ° C : ▴—period of 400 μm , length of 9.6 mm , inscription energy of 410 nJ , ▴—period of 400 μm , length of 10.0 mm , inscription energy of 650 nJ .

Fig. 8
Fig. 8

Examples of the spectral variation for a fusion-arc inscribed grating for (a) the central wavelength of an attenuation band and (b) the optical strength of the attenuation band as a function of annealing time.

Fig. 9
Fig. 9

Net spectral changes in fs-laser inscribed and fusion-arc fabricated LPGs as a function of annealing temperature: (a) wavelength shift and (b) change in the optical strength.

Fig. 10
Fig. 10

Simulated incident inscription of a PCF (fiber type ESM) from different relative angles of (a)  0 ° , (b)  45 ° , and (c)  90 ° showing the intensity distribution above the absorption threshold chosen to demonstrate where the inscription occurs using 600 nJ energy pulses. The mirror symmetry of the PCF with respect to y = 0 was used in simulation of 0 ° and 90 ° orientations.

Tables (1)

Tables Icon

Table 1 Estimate of the Contribution (in percentages) of the Elastic Strain to the Overall Index Modification of the LPG for a Given Annealing Temperature a

Metrics