Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Exact treatment for the entanglement of the multiphoton two-qubit system with the single-mode thermal field

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we study the entanglement between two two-level atoms (qubits) when they interact simultaneously with a single-mode thermal field through exchanging k photons. We demonstrate the entanglement of the bipartite by making use of the concurrence. Contrary to previous studies, we deduce an exact form of the wave function of the system for various types of initial atomic states. We show that the asymmetric case (i.e., nonidentical atoms) can generate amounts of entanglement much greater than those of the symmetric one. These amounts are sensitive to the value of the transition parameter k and the type of initial atomic states. We present a novel phenomenon: for a particular type of Bell states, the initial entanglement can be trapped through the evolution of the system. This would be of a great interest in the framework of quantum memory.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Steady-state entanglement of two coupled qubits

Elena del Valle
J. Opt. Soc. Am. B 28(2) 228-235 (2011)

Coherence and entanglement in a two-qubit system

Miguel Orszag and Maritza Hernandez
Adv. Opt. Photon. 2(2) 229-286 (2010)

Distributed manipulation of two-qubit entanglement with coupled continuous variables

Li-Tuo Shen, Rong-Xin Chen, Huai-Zhi Wu, and Zhen-Biao Yang
J. Opt. Soc. Am. B 32(2) 297-302 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved