Abstract

We demonstrate that quasi-phase-matching of the third-harmonic generation process can be obtained for a pulse pump in the photonic crystal fiber with a refractive-index grating. Conversion efficiency is calculated numerically using a system of coupled generalized nonlinear Schrödinger equations. We propose a special design of the microstructured fiber for the third-harmonic generation and analyze different phenomena limiting the maximum efficiency for short (femtosecond) and long (picosecond) pump pulses. Moreover, we show that a certain level of a group-velocity mismatch between the pump and the third harmonic can increase the maximum efficiency in the long pulse regime.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription