Abstract

We demonstrate a novel (to the best of our knowledge) whispering-gallery-mode fiber laser, pumped and gain coupled by evanescent waves, by inserting a bare optical fiber into a glass capillary filled with dye solution. The energy threshold properties of the lasers, including the energy threshold that varied with the refractive index (RI) of the dye solution for different fiber diameters and the produced length of the lasing emission along the fiber axis, are then investigated. We find experimentally that the energy threshold is very sensitive to the RI of the dye solution and the fiber diameter, and the produced length of the lasing emission is dependent on the dye concentration and the RI of the dye solution. The optical gain of a circular microcavity in the evanescent-wave pumping scheme is analyzed by introducing a Gaussian distribution function of the pump light, and various energy losses related to the microcavity are considered, which leads to a threshold energy formula. The formula for determining the produced length of the lasing emission is derived by introducing an attenuated factor in the threshold energy formula. The experimental results are in good agreement with the calculations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
    [CrossRef] [PubMed]
  2. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
    [CrossRef]
  3. H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
    [CrossRef]
  4. N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
    [CrossRef]
  5. J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, “Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett. 35, 2997–2999 (2010).
    [CrossRef] [PubMed]
  6. X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
    [CrossRef]
  7. H. Fujiwarra and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys. 38, 5101–5104 (1999).
    [CrossRef]
  8. S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
    [CrossRef]
  9. A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
    [CrossRef]
  10. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
    [CrossRef] [PubMed]
  11. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
    [CrossRef]
  12. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
    [CrossRef]
  13. Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
    [CrossRef] [PubMed]
  14. X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).
  15. K. M. Djafar and L. S. Lowell, Fibre-Optic Communications Technology (Science Press, 2002).
  16. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, 1998).
    [CrossRef]
  18. Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).
  19. C. C. Lam, P. Y. Leung, and K. Yang, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).
    [CrossRef]
  20. D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
    [CrossRef]

2010 (3)

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, “Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett. 35, 2997–2999 (2010).
[CrossRef] [PubMed]

2008 (1)

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

2007 (4)

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[CrossRef] [PubMed]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
[CrossRef]

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

2006 (1)

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

2005 (1)

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

2004 (1)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

2002 (1)

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

2001 (1)

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

2000 (1)

H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Fujiwarra and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys. 38, 5101–5104 (1999).
[CrossRef]

1992 (1)

An, K.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[CrossRef] [PubMed]

An, K. Y.

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

Arnold, S.

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

Bai, R.

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Banin, U.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, 1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Buchter, S. C.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

Chang, J. S.

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

Chen, N. K.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Chi, S.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Choi, Y. S.

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

Choung, Y. T.

H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[CrossRef] [PubMed]

Cupps, J. M.

Djafar, K. M.

K. M. Djafar and L. S. Lowell, Fibre-Optic Communications Technology (Science Press, 2002).

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
[CrossRef]

Ebenstein, Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
[CrossRef]

Fan, X.

Feng, Y. L.

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Fujiwarra, H.

H. Fujiwarra and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys. 38, 5101–5104 (1999).
[CrossRef]

Han, D. Y.

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Hoppmann, E.

Howard, D. J.

Hsu, K. C.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Hu, L. L.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, 1998).
[CrossRef]

Jiang, L. Q.

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

Jiang, N.

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Kaivola, M.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

Kazes, M.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Lacey, S.

Lai, Y. C.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Lam, C. C.

Lee, J. H.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

Lee, S. B.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

Lee, W.

Leung, P. Y.

Lewis, D. Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Lindfors, K.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

Lowell, L. S.

K. M. Djafar and L. S. Lowell, Fibre-Optic Communications Technology (Science Press, 2002).

Mokari, T.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
[CrossRef]

Moon, H. J.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[CrossRef] [PubMed]

Oh, M. K.

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

Park, G. W.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

Pu, X. Y.

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Ren, Y. T.

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

Sasaki, K.

H. Fujiwarra and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys. 38, 5101–5104 (1999).
[CrossRef]

Shevchenko, A.

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

Shopova, S. I.

Shopovab, S. I.

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

Shy, J. T.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Sun, Y.

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[CrossRef] [PubMed]

Suter, J. D.

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Tseng, S. M.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Wang, D. L.

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

White, I. M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Wu, C. S.

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

Xiang, W. L.

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Yang, K.

Zhang, L. Y.

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Zhang, P.

Zhang, Y. X.

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

Adv. Mater. (1)

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum roads in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4550 (2004).
[CrossRef]

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

S. B. Lee, M. K. Oh, J. H. Lee, and K. An, “Single radial-mode lasing in a submicron-thickness spherical shell microlaser,” Appl. Phys. Lett. 90, 201102 (2007).
[CrossRef]

Chin. Phys. B (1)

X. Y. Pu, N. Jiang, D. Y. Han, Y. L. Feng, and Y. T. Ren, “Linearly polarised three-colour lasing emission from an evanescent wave pumped and gain coupled fibre laser,” Chin. Phys. B 90, 054207 (2010).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, and J. S. Chang, “Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling,” J. Korean Phys. Soc. 39, 928–931(2001).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

H. Fujiwarra and K. Sasaki, “Lasing of a microsphere in dye solution,” Jpn. J. Appl. Phys. 38, 5101–5104 (1999).
[CrossRef]

N. K. Chen, L. Y. Zhang, K. C. Hsu, L. L. Hu, S. Chi, Y. C. Lai, S. M. Tseng, and J. T. Shy, “CW-pumped evanescent amplification based on side-polished fiber with heavily Er3+-doped glass overlay,” Jpn. J. Appl. Phys. 45, 6328–6330 (2006).
[CrossRef]

Nat. Photon. (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photon. 1, 106–114 (2007).
[CrossRef]

Opt. Commun. (1)

A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola, “Evanescent wave pumped cylindrical microcavity laser with intense output radiation,” Opt. Commun. 245, 349–353(2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. J. Moon, Y. T. Choung, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

Y. Sun, S. I. Shopovab, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[CrossRef] [PubMed]

Spectrosc. Spectr. Anal. (1)

D. L. Wang, N. Jiang, L. Q. Jiang, and X. Y. Pu. “The precise assignment of whispering gallery modes for lasing spectra emitting from cylindrical micro-cavities,” Spectrosc. Spectr. Anal. 28, 2749–2753 (2008) (in Chinese).
[CrossRef]

Other (4)

X. Y. Pu, N. Jiang, R. Bai, W. L. Xiang, Y. X. Zhang, and D. Y. Han, “A novel micro-cavity fiber laser with three-color WGM lasing emission in a single optical fiber,” Chinese patent ZL200810058304 (September 30 2009).

K. M. Djafar and L. S. Lowell, Fibre-Optic Communications Technology (Science Press, 2002).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a WGM fiber laser pumped by an evanescent wave. Pump light propagating within a bare fiber in the form of meridian beams: θ i , entrance angle of a beam on the fiber end face; θ t , incidence angle of the beam on the fiber side face; E P and E w , evanescent fields of a pump light and a WGM.

Fig. 2
Fig. 2

Calculated optical gains that varied with the RI of the cladding solution. Curves a–c, θ i max = 3.8 ° ( θ t min = 87.4 ° ); curves d–f, θ i max = 15 ° ( θ t min = 79.8 ° ); HD, homogeneous distribution; GD, Gaussian distribution. In the calculations, n 1 = 1.458 for the quartz fiber used in our work, λ p = 532 nm , and β 2 = λ p α abs p , out = 0.062 for the dye concentration of 4 × 10 3 m o l / l .

Fig. 3
Fig. 3

Quality factors ( Q tol , solid blue curve; Q leak , solid green curve; and Q abs , red curve with circles) and occupation factor ( η w , violet dotted curve) that varied with the n 2 value. The calculated fiber diameters are (a) 93, (b) 196, and (c)  296 μm .

Fig. 4
Fig. 4

Schematic illustration of the experimental setup: P 1 , P 2 , and P 3 , polarizer; BS, beam splitter; PM, powermeter; L 1 , L 2 , and L 3 , lenses; F 1 , bare quartz fiber; F 2 , optical fiber; C, glass capillary; E P , evanescent field of pump light; E w , evanescent field of WGM; L w , WGM laser radiation.

Fig. 5
Fig. 5

Lasing spectrum from the WGM fiber laser of a fiber of diameter 196 μm . The output intensities of the laser versus pump energies are shown in the inset of the figure. The measured free spectral range is 0.39 nm , indicated by a pair of arrows, and the assigned modes for each of the lasing peaks are indicated by brackets.

Fig. 6
Fig. 6

Threshold energies that varied with the RI of the cladding solution at the position of Z = 0 mm : green square points, experimental data for the fiber of diameter 296 μm ; red circle points, experimental data for the fiber of diameter 196 μm ; blue triangle points, experimental data for the fiber of diameter 93 μm ; solid curves, theoretically calculated results.

Fig. 7
Fig. 7

Output intensities of a fiber laser versus pump energies at different fiber positions (Z): (a)  Z = 50 and (b)  80 mm .

Fig. 8
Fig. 8

Produced length of lasing emission versus pump energy. The n 2 value is fixed at 1.361, but the dye concentrations are (a)  4 × 10 3 M / l and (b)  8 × 10 3 M / l . The dye concentration is the same as that in (a), but the n 2 values is 1.402 in (c) . The red triangle points with error bars are experimental data, and the solid curves are theoretically calculated results for various fitting parameters ( η p ).

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I p ( r ) = E p 2 ( r ) = I 0 exp [ 2 k ( β 1 + β 2 ) ( r a ) ] , ( r a ) ,
g ( r ) = C ( ζ , λ c , n 2 ) N 0 ε p 0 exp [ 2 k ( β 1 + β 2 ) ( r a ) ] , ( r a ) ,
G = a g ( r ) d r = 0 C ( ξ , λ c , n 2 ) N 0 ε p 0 exp [ 2 k ( β 1 + β 2 ) R ] d R = C ( ζ , λ c , n 2 ) N 0 λ p ε p 0 4 π [ ( n 1 2 sin 2 θ t n 2 2 ) 1 / 2 + λ p α abs p , out ] .
sin 2 θ t ¯ = θ t min π / 2 f ( θ t ) sin 2 θ t d θ t
f ( θ t ) = f 0 exp [ cos 2 θ t ( 1 n 1 2 cos 2 θ t min ) cos 2 θ t min ( 1 n 1 2 cos 2 θ t ) ] ,
1 Q tol = 1 Q abs + 1 Q leak + 1 Q scat .
H ( r ) = A 1 J n ( n 1 k n l r ) e z , ( 0 r a ) ,
H ( r ) = A 2 H n ( 1 ) ( n 2 k n l r ) e z , ( r a ) ,
E ( r ) = D 1 [ n n 1 2 r J n ( n 1 k n l r ) e r k n l n 1 J n ( n 1 k n l r ) e φ ] , ( 0 r a ) ,
E ( r ) = D 2 [ n n 2 2 r H n ( 1 ) ( n 2 k n l r ) e r k n l n 2 H n ( 1 ) ( n 2 k n l r ) e φ ] , ( r a ) ,
Q abs = ( 1 Q abs in + 1 Q abs out ) 1 = [ α abs w , in λ l n ( 1 η w ) 2 π n 1 + α abs w , out λ l n η w 2 π n 1 ] 1 .
n 2 J n ( n 1 k n l a ) J n ( n 1 k n l a ) = n 1 H n ( 1 ) ( n 2 k n l a ) H n ( 1 ) ( n 2 k n l a ) .
Q leak π 4 ( n 1 2 n 2 2 ) x l , n 2 | H n ( 1 ) ( n 2 x l , n ) | 2 · [ ( n n 1 x l , n ) 2 + ( Y n ( n 2 x l , n ) Y n ( n 2 x l , n ) ) 2 ] .
α tol 2 π n 1 λ l n [ 1 Q abs + 1 Q leak ] .
ε p 0 th = 4 π [ ( n 1 2 sin 2 θ t ¯ n 2 2 ) 1 / 2 + λ p α abs p , out ] C ( ζ , λ c , n 2 ) N 0 λ p α tol = C ( ζ , λ c , n 2 ) [ ( n 1 2 sin 2 θ t ¯ n 2 2 ) 1 / 2 + λ p α abs p , out ] [ Q abs + Q leak ] N 0 λ p λ l n Q abs Q leak .
Z max = ln [ ε p 0 th ( Z max ) ] ln [ ε p 0 th ( 0 ) ] ( 1 η p ) α abs p , in + η p α abs p , out .
2 π a 1 λ n l n 1 n + 2 1 / 3 a l n 1 / 3 + 3 10 2 2 / 3 a l 2 n 1 / 3 + 0 2 / 3 .
Δ ε p 0 th ( n 2 ) = g ( n 2 ) Δ α tol ( n 2 ) | Δ g ( n 2 ) | α tol ( n 2 ) ,
f n ( m x ) f n ( m x ) = [ 1 m x f n ( m x ) f n ( m x ) + ( 1 ( n m x ) 2 ) ] .
W [ H n ( 1 ) ( m x ) , Y n ( m x ) ] = W [ J n ( m x ) , Y n ( m x ) ] = 2 π m x ,
H n ( 1 ) ( m x ) H n ( 1 ) ( m x ) Y n ( m x ) Y n ( m x ) = 2 π m x Y n ( m x ) H n ( 1 ) ( m x ) .
H n ( 1 ) ( n 2 k n l a ) H n ( 1 ) ( n 2 k n l a ) = P J n ( n 1 k n l a ) J n ( n 1 k n l a ) , { TM   wave , P = n 1 / n 2 , TE   wave , P = n 2 / n 1 .
M ( z ) = H n ( 1 ) ( n 2 z ) H n ( 1 ) ( n 2 z ) P J n ( n 1 z ) J n ( n 1 z ) .
M ( x 0 ) = M ( z 0 i y 0 ) = M ( z 0 ) i M ( z 0 ) y 0 + 0 ( y 0 2 ) = i M ( z 0 ) y 0 + 0 ( y 0 2 ) .
H n ( 1 ) ( n 2 x 0 ) H n ( 1 ) ( n 2 x 0 ) P J n ( n 1 x 0 ) J n ( n 1 x 0 ) = i M ( z 0 ) y 0 + 0 ( y 0 2 ) = [ H n ( 1 ) ( n 2 x 0 ) H n ( 1 ) ( n 2 x 0 ) Y n ( n 2 x 0 ) Y n ( n 2 x 0 ) ] + [ Y n ( n 2 x 0 ) Y n ( n 2 x 0 ) P J n ( n 1 x 0 ) J n ( n 1 x 0 ) ] .
Y n ( n 2 x 0 ) Y n ( n 2 x 0 ) P J n ( n 1 x 0 ) J n ( n 1 x 0 ) = 2 π n 2 x 0 Y n ( n 2 x 0 ) H n ( 1 ) ( n 2 x 0 ) i M ( z 0 ) y 0 + 0 ( y 0 2 ) .
Y n ( n 2 x 0 ) Y n ( n 2 x 0 ) P J n ( n 1 x 0 ) J n ( n 1 x 0 ) = 0 ,
i M ( z 0 ) y 0 = 2 π n 2 x 0 Y n ( n 2 x 0 ) H n ( 1 ) ( n 2 x 0 ) + 0 ( y 0 2 ) .
M ( z 0 ) = n 2 H n ( 1 ) ( n 2 z 0 ) H n ( 1 ) ( n 2 z 0 ) ( H n ( 1 ) ( n 2 z 0 ) ) 2 ( H n ( 1 ) ( n 2 z 0 ) ) 2 n 1 2 n 2 J n ( n 1 z 0 ) J n ( n 1 z 0 ) ( J n ( n 1 z 0 ) ) 2 ( J n ( n 1 z 0 ) ) 2 .
M ( z 0 ) = n 2 + n 1 2 n 2 .
Q leak ( TM ) = x 0 2 | y 0 | = x l , n 2 | y 0 | π 4 ( n 1 2 n 2 2 ) x l , n 2 | H n ( 1 ) ( n 2 x l , n ) | 2 .
M ( z 0 ) = n 2 [ ( n n 2 x 0 ) 2 ( n n 1 x 0 ) 2 ] + n 2 ( n 1 2 n 2 2 1 ) ( Y n ( n 2 x 0 ) Y n ( n 2 x 0 ) ) 2 .
Q leak ( TE ) = x l , n 2 | y 0 | Q leak ( TM ) · [ ( n n 1 x l , n ) 2 + ( Y n ( n 2 x l , n ) Y n ( n 2 x l , n ) ) 2 ] ,

Metrics