Abstract

We propose practical schemes for concentrating entanglement of a pair of unknown partially entangled Bell states and three-photon W states with cross-Kerr nonlinearity. In these schemes, utilizing local operations and classical communication, two separated parties can obtain one maximally entangled photon pair from two previously shared partially entangled photon pairs, and three separated parties can obtain one maximally entangled three-photon W state and a maximally entangled cluster state from two identical partially entangled three-photon W states with a certain success probability. Finally, we discuss the influence of sources of error and decoherence on the schemes. The proposed setup only employs some linear optical elements and the cross-Kerr medium, which greatly reduces the difficulty of experimental realization. These schemes are feasible with current experimental technology.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  3. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [CrossRef] [PubMed]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  5. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
    [CrossRef] [PubMed]
  6. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
    [CrossRef] [PubMed]
  7. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
    [CrossRef] [PubMed]
  8. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
    [CrossRef]
  9. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  10. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [CrossRef] [PubMed]
  11. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
    [CrossRef] [PubMed]
  12. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [CrossRef] [PubMed]
  13. M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
    [CrossRef]
  14. S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
    [CrossRef]
  15. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
    [CrossRef] [PubMed]
  16. F. Morikoshi, “Recovery ofentanglement lost in entanglement manipulation,” Phys. Rev. Lett. 84, 3189–3192 (2000).
    [CrossRef] [PubMed]
  17. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
    [CrossRef]
  18. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [CrossRef] [PubMed]
  19. H. K. Lo and S. Popescu, “Beyond mean values concentrating entanglement by local actions,” Phys. Rev. A 63, 022301 (2001).
    [CrossRef]
  20. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
    [CrossRef]
  21. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
    [CrossRef]
  22. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
    [CrossRef]
  23. Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
    [CrossRef]
  24. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  25. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
    [CrossRef] [PubMed]
  26. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
    [CrossRef] [PubMed]
  27. T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
    [CrossRef]
  28. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010).
    [CrossRef]
  29. J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
    [CrossRef]
  30. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004).
    [CrossRef]
  31. G. J. Milburn and D. F. Walls, “State reduction in quantum-counting quantum nondemolition measurements,” Phys. Rev. A 30, 56–60 (1984).
    [CrossRef]
  32. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [CrossRef] [PubMed]
  33. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
    [CrossRef]
  34. T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
    [CrossRef]
  35. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
    [CrossRef]
  36. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
    [CrossRef]
  37. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
    [CrossRef]
  38. Hyunseok Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320(2006).
    [CrossRef]
  39. S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006).
    [CrossRef]
  40. H. J. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16–33(2007).
    [CrossRef]
  41. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
    [CrossRef]
  42. N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
    [CrossRef] [PubMed]
  43. X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
    [CrossRef]
  44. G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
    [CrossRef]
  45. M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
    [CrossRef]
  46. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [CrossRef] [PubMed]
  47. C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
    [CrossRef]
  48. K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
    [CrossRef]
  49. B. S. Shi and T. Tomita, “Schemes for generating W state of paths and W state of polarization photons,” http://arxiv.org/abs/quant-ph/0208170.
  50. X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
    [CrossRef]
  51. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
    [CrossRef] [PubMed]
  52. H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
    [CrossRef]
  53. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
    [CrossRef]
  54. H. F. Wang and S. Zhang, “Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors,” Eur. Phys. J. D 53, 359–363 (2009).
    [CrossRef]

2010

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010).
[CrossRef]

2009

H. F. Wang and S. Zhang, “Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors,” Eur. Phys. J. D 53, 359–363 (2009).
[CrossRef]

H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

2008

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
[CrossRef]

2007

H. J. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16–33(2007).
[CrossRef]

G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
[CrossRef]

2006

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Hyunseok Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320(2006).
[CrossRef]

S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006).
[CrossRef]

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
[CrossRef]

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
[CrossRef]

2005

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
[CrossRef]

2004

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004).
[CrossRef]

2003

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

2002

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
[CrossRef]

2001

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

H. K. Lo and S. Popescu, “Beyond mean values concentrating entanglement by local actions,” Phys. Rev. A 63, 022301 (2001).
[CrossRef]

2000

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[CrossRef]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

F. Morikoshi, “Recovery ofentanglement lost in entanglement manipulation,” Phys. Rev. Lett. 84, 3189–3192 (2000).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

1999

K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
[CrossRef]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

1998

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

1996

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

1985

N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
[CrossRef] [PubMed]

1984

G. J. Milburn and D. F. Walls, “State reduction in quantum-counting quantum nondemolition measurements,” Phys. Rev. A 30, 56–60 (1984).
[CrossRef]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Banaszek, K.

K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
[CrossRef]

Barrett, S. D.

S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Beausoleil, R. G.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Berglund, A. J.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Bose, S.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Braunstein, S. L.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Brukner, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Cao, Z. L.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

Chen, J. L.

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

Chen, Y. A.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

Cirac, J. I.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Daniell, M.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

Deng, F. G.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
[CrossRef]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

Duan, L. M.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

Edamatsu, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Fang, M. F.

J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
[CrossRef]

Fuchs, C. A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Fukuda, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Furusawa, A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Giedke, G.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

Gisin, N.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

Guo, G. C.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Ham, B. S.

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Haus, H. A.

N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
[CrossRef] [PubMed]

Imoto, N.

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
[CrossRef] [PubMed]

Itabashi, S.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Jeong, Hyunseok

Hyunseok Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320(2006).
[CrossRef]

Jin, G. S.

G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
[CrossRef]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Kim, M. S.

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Kimble, H. J.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Knight, P. L.

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Koashi, M.

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Kok, P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Kosaka, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Kwek, L. C.

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

Kwiat, P. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Lin, X. M.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Lin, Y.

G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
[CrossRef]

Lo, H. K.

H. K. Lo and S. Popescu, “Beyond mean values concentrating entanglement by local actions,” Phys. Rev. A 63, 022301 (2001).
[CrossRef]

Loock, P. V.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Mathis, W.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
[CrossRef]

Matsuda, N.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Milburn, G. J.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006).
[CrossRef]

G. J. Milburn and D. F. Walls, “State reduction in quantum-counting quantum nondemolition measurements,” Phys. Rev. A 30, 56–60 (1984).
[CrossRef]

Mitsumori, Y.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Morikoshi, F.

F. Morikoshi, “Recovery ofentanglement lost in entanglement manipulation,” Phys. Rev. Lett. 84, 3189–3192 (2000).
[CrossRef] [PubMed]

Munro, W. J.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004).
[CrossRef]

Murao, M.

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Naik, D. S.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Nemoto, K.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004).
[CrossRef]

Oh, C. H.

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

Ozdemir, S. K.

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

Pahlke, K.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
[CrossRef]

Pan, J. W.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Parker, S.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[CrossRef]

Paternostro, M.

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Peterson, C. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Plenio, M. B.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Polzik, E. S.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Popescu, S.

H. K. Lo and S. Popescu, “Beyond mean values concentrating entanglement by local actions,” Phys. Rev. A 63, 022301 (2001).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

Razavi, M.

H. J. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16–33(2007).
[CrossRef]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Sato, A.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Shapiro, H. J.

H. J. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16–33(2007).
[CrossRef]

Sheng, Y. B.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
[CrossRef]

Shi, B. S.

B. S. Shi and T. Tomita, “Schemes for generating W state of paths and W state of polarization photons,” http://arxiv.org/abs/quant-ph/0208170.

Shimizu, R.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Simon, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

Song, W.

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Spiller, T. P.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Tan, J.

J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
[CrossRef]

Tittel, W.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Tomita, T.

B. S. Shi and T. Tomita, “Schemes for generating W state of paths and W state of polarization photons,” http://arxiv.org/abs/quant-ph/0208170.

Tsuchizawa, T.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Vedral, V.

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Walls, D. F.

G. J. Milburn and D. F. Walls, “State reduction in quantum-counting quantum nondemolition measurements,” Phys. Rev. A 30, 56–60 (1984).
[CrossRef]

Wang, H. F.

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
[CrossRef]

H. F. Wang and S. Zhang, “Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors,” Eur. Phys. J. D 53, 359–363 (2009).
[CrossRef]

H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

Wang, X. W.

J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
[CrossRef]

Watanabe, T.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

White, A. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Wódkiewicz, K.

K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Wu, B.

G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
[CrossRef]

Wu, C.

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

Xiao, Y. F.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Yamada, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Yamamoto, T.

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

Yamamoto, Y.

N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
[CrossRef] [PubMed]

Yamomoto, T.

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

Yang, M.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

Yang, T.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

Ye, M. Y.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Yeon, K. H.

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
[CrossRef]

Yokoyama, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Zbinden, H.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Zhan, M. S.

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

Zhang, A. N.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

Zhang, L. H.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
[CrossRef]

Zhang, S.

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
[CrossRef]

H. F. Wang and S. Zhang, “Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors,” Eur. Phys. J. D 53, 359–363 (2009).
[CrossRef]

H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

Zhao, Y.

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

Zhao, Z.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

Zhou, H. Y.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
[CrossRef]

Zhou, Z. W.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

Zoller, P.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

Zou, X. B.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
[CrossRef]

Appl. Phys. Lett.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95, 171110 (2009).
[CrossRef]

Eur. Phys. J. D

H. F. Wang and S. Zhang, “Scheme for linear optical preparation of a type of four-photon entangled state with conventional photon detectors,” Eur. Phys. J. D 53, 359–363 (2009).
[CrossRef]

H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. Tan, X. W. Wang, and M. F. Fang, “Generation and concentration of multi-atom entangled states,” J. Phys. B 39, 741–748(2006).
[CrossRef]

Nature

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

T. Yamomoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement,” Nature 403, 515–519 (2000).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[CrossRef] [PubMed]

New J. Phys.

T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. V. Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys. 8, 30–55 (2006).
[CrossRef]

H. J. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Phys. 9, 16–33(2007).
[CrossRef]

W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137–149 (2005).
[CrossRef]

Phys. Rev. A

Hyunseok Jeong, “Quantum computation using weak nonlinearities: robustness against decoherence,” Phys. Rev. A 73, 052320(2006).
[CrossRef]

S. D. Barrett and G. J. Milburn, “Quantum-information processing via a lossy bus,” Phys. Rev. A 74, 060302(R) (2006).
[CrossRef]

G. J. Milburn and D. F. Walls, “State reduction in quantum-counting quantum nondemolition measurements,” Phys. Rev. A 30, 56–60 (1984).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef] [PubMed]

H. K. Lo and S. Popescu, “Beyond mean values concentrating entanglement by local actions,” Phys. Rev. A 63, 022301 (2001).
[CrossRef]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999).
[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005).
[CrossRef]

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325(2008).
[CrossRef]

N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect,” Phys. Rev. A 32, 2287–2292 (1985).
[CrossRef] [PubMed]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

G. S. Jin, Y. Lin, and B. Wu, “Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity,” Phys. Rev. A 75, 054302 (2007).
[CrossRef]

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
[CrossRef]

C. Wu, J. L. Chen, L. C. Kwek, and C. H. Oh, “Quantum nonlocality of N-qubit W states,” Phys. Rev. A 73, 012310 (2006).
[CrossRef]

H. F. Wang and S. Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled four-photon W state,” Phys. Rev. A 66, 044302 (2002).
[CrossRef]

Phys. Rev. Lett.

D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
[CrossRef]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[CrossRef] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000).
[CrossRef] [PubMed]

F. Morikoshi, “Recovery ofentanglement lost in entanglement manipulation,” Phys. Rev. Lett. 84, 3189–3192 (2000).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003).
[CrossRef] [PubMed]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004).
[CrossRef]

Science

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[CrossRef] [PubMed]

Other

B. S. Shi and T. Tomita, “Schemes for generating W state of paths and W state of polarization photons,” http://arxiv.org/abs/quant-ph/0208170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed entanglement concentration for two unknown partially entangled photon pairs. PBSs transmit H photons and reflect V photons. HD, homodyne measurement; R, λ / 2 wave plate; P, π / 2 -phase shifter; D, detector.

Fig. 2
Fig. 2

Schematic diagram of the proposed entanglement concentration for two unknown partially entangled three-photon W states. FS-PBSs transmit F polarization photons and reflect S polarization photons. HD, homodyne measurement; R, λ / 2 wave plate; P, π / 2 -phase shifter; D, detector.

Fig. 3
Fig. 3

Schematic diagram of the proposed entanglement concentration for two unknown partially entangled four-photon cluster states. π CKM, π cross-Kerr medium.

Fig. 4
Fig. 4

(a) Probabilities of concentrating Bell state (red, middle curve), W state (blue, lowest curve), and cluster state (green, highest curve), (b) degree of dephasing γ as a function of η and α θ .

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

H QND = χ n ^ a n ^ c ,
U c k | ψ | α c = e i H QND t ( a | 0 a + b | 1 a ) | α c = a | 0 a | α c + b | 1 a | α e i θ c ,
| ψ 12 | ψ 34 = ( a | H 1 | H 2 + b | V 1 | V 2 ) ( a | H 3 | H 4 + b | V 3 | V 4 ) ,
| φ 1 = a 2 | H 1 | H 2 | H 3 | H 4 + b 2 | V 1 | V 2 | V 3 | V 4 + a b ( | H 1 | H 2 | V 3 | V 4 + | V 1 | V 2 | H 3 | H 4 ) .
| φ 2 = a 2 | H a 5 | H a 6 | H 2 | H 4 | α e i 2 θ + b 2 | V a 5 | V a 6 | V 2 | V 4 + a b ( | H a 5 | V a 6 | H 2 | V 4 + | V a 5 | H a 6 | V 2 | H 4 ) | α e i θ .
| φ 3 = a b ( | H a 5 | V a 6 | H 2 | V 4 + | V a 5 | H a 6 | V 2 | H 4 ) .
| H 1 2 ( | H + | V ) , | V 1 2 ( | H | V ) ,
| φ 4 = 1 2 ( | H | H | H | H | H | V | H | H + | V | H | H | H | V | V | H | H + | H | H | V | V + | H | V | V | V | V | H | V | V | V | V | V | V ) b 1 b 4 3 2 .
| φ + = 1 2 ( | H | H + | V | V ) 3 2 .
| φ = 1 2 ( | H | H | V | V ) 3 2 ,
| ϕ 456 = γ | H 4 | H 5 | V 6 + δ ( | H 4 | V 5 | H 6 + | V 4 | H 5 | H 6 ) ,
| ϕ 123 | ϕ 456 = [ γ | H 1 | H 2 | V 3 + δ ( | H 1 | V 2 | H 3 + | V 1 | H 2 | H 3 ) ] [ γ | H 4 | H 5 | V 6 + δ ( | H 4 | V 5 | H 6 + | V 4 | H 5 | H 6 ) 456 ] .
| Φ = γ 2 | H 1 | H 2 | V 3 | H 4 | H 5 | V 6 + γ δ ( | H 1 | H 2 | V 3 | H 4 | V 5 | H 6 + | H 1 | H 2 | V 3 | V 4 | H 5 | H 6 + | H 1 | V 2 | H 3 | H 4 | H 5 | V 6 + | V 1 | H 2 | H 3 | H 4 | H 5 | V 6 ) + δ 2 ( | H 1 | V 2 | H 3 | H 4 | V 5 | H 6 + | H 1 | V 2 | H 3 | V 4 | H 5 | H 6 + | V 1 | H 2 | H 3 | H 4 | V 5 | H 6 + | V 1 | H 2 | H 3 | V 4 | H 5 | H 6 ) .
| Φ 1 = γ 2 | H a 1 | H a 3 | V a 6 | V a 8 | H 4 | H 5 | α e i 2 θ + γ δ ( | H a 1 | H a 3 | V a 6 | H a 7 | H 4 | V 5 + | H a 1 | H a 3 | V a 6 | H a 7 | V 4 | H 5 + | H a 1 | V a 4 | H a 5 | V a 8 | H 4 | H 5 + | V a 2 | H a 3 | H a 5 | V a 8 | H 4 | H 5 ) | α + δ 2 ( | H a 1 | V a 4 | H a 5 | H a 7 | H 4 | V 5 + | H a 1 | V a 4 | H a 5 | H a 7 | V 4 | H 5 + | V a 2 | H a 3 | H a 5 | H a 7 | H 4 | V 5 + | V a 2 | H a 3 | H a 5 | H a 7 | V 4 | H 5 ) | α e i 2 θ .
| Φ 2 = γ δ ( | H a 9 | H a 10 | V a 11 | H a 12 | H 4 | V 5 + | H a 9 | H a 10 | V a 11 | H a 12 | V 4 | H 5 + | H a 9 | V a 10 | H a 11 | V a 12 | H 4 | H 5 + | V a 9 | H a 10 | H a 11 | V a 12 | H 4 | H 5 ) .
| Φ 3 = γ δ 2 [ ( | H + | V ) a 9 | H a 10 | H a 11 | H a 12 | H 4 | V 5 + ( | H + | V ) a 9 | H a 10 | H a 11 | H a 12 | V 4 | H 5 + ( | H + | V ) a 9 | V a 10 | V a 11 | V a 12 | H 4 | H 5 + ( | H | V ) a 9 | H a 10 | V a 11 | V a 12 | H 4 | H 5 ) ] .
| Φ 4 = γ δ 2 [ ( | H 1 | H 2 | H 3 | H 6 | H 4 | V 5 + | H 1 | H 2 | H 3 | H 6 | V 4 | H 5 + | V 1 | V 2 | V 3 | V 6 | H 4 | H 5 ) | α + ( | V 1 | H 2 | H 3 | H 6 | V 4 | H 5 + | V 1 | H 2 | H 3 | H 6 | H 4 | V 5 ) | α e i θ + ( | H 1 | V 2 | V 3 | V 6 | H 4 | H 5 | V 1 | H 2 | V 3 | V 6 | H 4 | H 5 ) | α e i θ + | H 1 | H 2 | V 3 | V 6 | H 4 | H 5 | α e i 2 θ ] .
| Φ 5 = γ δ 2 ( | H 1 | H 2 | H 3 | H 6 | H 4 | V 5 + | H 1 | H 2 | H 3 | H 6 | V 4 | H 5 + | V 1 | V 2 | V 3 | V 6 | H 4 | H 5 ) .
| V = 1 2 ( | F + | S ) , | H = 1 2 ( | F | S )
| Φ 6 = γ δ 4 [ | F 1 | F 3 | F 6 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 5 + | F 1 | S 3 | S 6 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 5 + | F 1 | S 3 | S 6 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 5 + | S 1 | S 3 | F 6 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 5 + | S 1 | F 3 | S 6 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 5 | F 1 | F 3 | S 6 ( | H | H | V + | H | V | H | V | H | H ) 2 4 5 | F 1 | S 3 | F 6 ( | H | H | V + | H | V | H | V | H | H ) 2 4 5 | S 1 | F 3 | F 6 ( | H | H | V + | H | V | H | V | H | H ) 2 4 5 | S 1 | S 3 | S 6 ( | H | H | V + | H | V | H | V | H | H ) 2 4 5 ] .
| W + = 1 3 ( | H | H | V + | H | V | H + | V | H | H ) 2 4 6 .
| W = 1 3 ( | H | H | V + | H | V | H | V | H | H ) 2 4 6 ,
| Φ ¯ 1 = f ( x , α cos 2 θ ) [ γ 2 | H a 1 | H a 3 | V a 6 | V a 8 | H 4 | H 5 + δ 2 ( | H a 1 | V a 4 | H a 5 | H a 7 | H 4 | V 5 + | H a 1 | V a 4 | H a 5 | H a 7 | V 4 | H 5 + | V a 2 | H a 3 | H a 5 | H a 7 | H 4 | V 5 + | V a 2 | H a 3 | H a 5 | H a 7 | V 4 | H 5 ) ] + f ( x , α ) [ γ δ ( | H a 1 | H a 3 | V a 6 | H a 7 | H 4 | V 5 + | H a 1 | H a 3 | V a 6 | H a 7 | V 4 | H 5 + | H a 1 | V a 4 | H a 5 | V a 8 | H 4 | H 5 + | V a 2 | H a 3 | H a 5 | V a 8 | H 4 | H 5 ) ] ,
| Ψ 1 = δ 2 ( | H b 1 | V b 2 | H b 3 | H b 4 | V b 5 | H b 6 + | H b 1 | V b 4 | H b 3 | V b 4 | H b 5 | H b 6 + | V b 1 | H b 2 | H b 3 | H b 4 | V b 5 | H b 6 + | V b 1 | H b 2 | H b 3 | V b 4 | H b 5 | H b 6 ) .
| H H | H H ; | H V | H V ; | V H | V H ; | V V | V V .
| Ψ 2 = δ 2 ( | V b 1 | V b 2 | H b 3 | V b 4 | V b 5 | H b 6 + | V b 1 | V b 4 | H b 3 | H b 4 | H b 5 | H b 6 + | H b 1 | H b 2 | H b 3 | V b 4 | V b 5 | H b 6 + | H b 1 | H b 2 | H b 3 | H b 4 | H b 5 | H b 6 ) .
| C = 1 2 ( | H b 1 | H b 2 | H b 4 | H b 5 + | V b 1 | V b 2 | H b 4 | H b 5 + | H b 1 | H b 2 | V b 4 | V b 5 | V b 1 | V b 2 | V b 4 | V b 5 ) .

Metrics