Abstract

This paper describes microscopic calculations of photocurrent generation spectra due to intersubband transitions in semiconductor heterostructures that can extract energy from photons in the terahertz and mid-IR ranges. As expected in the mid-IR, the interconduction conduction band transitions dominate the photocurrent. However, the numerical results presented here show that in the far-IR there is a range in which valence-band-based transitions dominate the photocurrent, and these can be sustained under perpendicular incidence. This would lead to devices that do not need prisms and couplers in contrast with conduction band-based intersubband absorbers. Examples for different quantum well structures and different thermal source temperatures are compared and contrasted numerically. It is further demonstrated that many body effects, so far ignored in simulations of materials for photovoltaic and thermophotovoltaic applications, are shown to be of relevance for both conduction (TM mode) and valence-band based (TE mode) configurations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008).
    [CrossRef]
  3. S. Tomić, “Intermediate-band solar cells: influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82, 195321 (2010).
    [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  5. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
    [CrossRef]
  6. C. Goupil, “Thermodynamics of the thermoelectric potential,” J. Appl. Phys. 106, 104907 (2009).
    [CrossRef]
  7. J. Yin and R. Paiella, “Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion,” Opt. Express 18, 1618–1629 (2010).
    [CrossRef] [PubMed]
  8. M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
    [CrossRef]
  9. M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997).
    [CrossRef]
  10. M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998).
    [CrossRef]
  11. G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
    [CrossRef] [PubMed]
  12. J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004).
    [CrossRef]
  13. M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004).
    [CrossRef]
  14. R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
    [CrossRef]
  15. M. F. Pereira Jr., “Intersubband antipolaritons: microscopic approach,” Phys. Rev. B 75, 195301 (2007).
    [CrossRef]
  16. T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009).
    [CrossRef]
  17. T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
    [CrossRef]
  18. A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010).
    [CrossRef]
  19. S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
    [CrossRef]
  20. V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
    [CrossRef]
  21. W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
    [CrossRef]

2010 (4)

S. Tomić, “Intermediate-band solar cells: influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82, 195321 (2010).
[CrossRef]

J. Yin and R. Paiella, “Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion,” Opt. Express 18, 1618–1629 (2010).
[CrossRef] [PubMed]

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010).
[CrossRef]

2009 (2)

C. Goupil, “Thermodynamics of the thermoelectric potential,” J. Appl. Phys. 106, 104907 (2009).
[CrossRef]

T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009).
[CrossRef]

2008 (1)

A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008).
[CrossRef]

2007 (2)

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

M. F. Pereira Jr., “Intersubband antipolaritons: microscopic approach,” Phys. Rev. B 75, 195301 (2007).
[CrossRef]

2006 (1)

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

2004 (4)

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004).
[CrossRef]

M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004).
[CrossRef]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (1)

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

1998 (1)

M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998).
[CrossRef]

1997 (1)

M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997).
[CrossRef]

1994 (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
[CrossRef]

1992 (1)

W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
[CrossRef]

Airey, R. J.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Aroutiounian, V.

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

Bain, M.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Beere, H.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

Binder, R.

M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
[CrossRef]

Blaser, S.

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

Bris, A. L.

A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chow, W. W.

W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
[CrossRef]

Cockburn, J. W.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Cullis, A. G.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Dang, T. U.-K.

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

Davies, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

Faist, J.

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Feltrin, A.

A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Freundlich, A.

A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008).
[CrossRef]

Gamble, H. S.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Goupil, C.

C. Goupil, “Thermodynamics of the thermoelectric potential,” J. Appl. Phys. 106, 104907 (2009).
[CrossRef]

Graf, M.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

Guillemoles, J. F.

A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010).
[CrossRef]

Harrison, P.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Hennerberger, K.

M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998).
[CrossRef]

M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997).
[CrossRef]

Hofstetter, D.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Ikonic, Z.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Kelsall, R. W.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Khachatryan, A.

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

Knorr, A.

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

Koch, S. W.

M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
[CrossRef]

W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
[CrossRef]

Krysa, A. B.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Li, J.

J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004).
[CrossRef]

Linfield, E.

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

Lynch, S. A.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Matmon, G.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Murdin, B.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Murzyn, P.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Nelander, R.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Ni, W.-X.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Ning, C. Z.

J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004).
[CrossRef]

Norris, D. J.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Paiella, R.

Paul, D. J.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Pereira, M. F.

T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009).
[CrossRef]

M. F. Pereira Jr., “Intersubband antipolaritons: microscopic approach,” Phys. Rev. B 75, 195301 (2007).
[CrossRef]

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004).
[CrossRef]

M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998).
[CrossRef]

M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997).
[CrossRef]

M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
[CrossRef]

W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
[CrossRef]

Petrosyan, S.

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

Pidgeon, C. R.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Revin, D. G.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Richter, M.

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

Ritchie, D.

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

Roberts, J. S.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Scalari, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

Schmielau, T.

T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Soulby, M. R.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Suet, Z.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Tomic, S.

S. Tomić, “Intermediate-band solar cells: influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82, 195321 (2010).
[CrossRef]

Touryan, K.

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

Townsend, P.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Wacker, A.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Weber, C.

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

Wenzel, H.

M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004).
[CrossRef]

Wilson, L. R.

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

Yin, J.

Zhang, J.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Zhao, M.

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[CrossRef]

M. F. Pereira Jr., R. Binder, and S. W. Koch, “Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects,” Appl. Phys. Lett. 64, 279–281 (1994).
[CrossRef]

T. Schmielau and M. F. Pereira Jr., “Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers,” Appl. Phys. Lett. 95, 231111 (2009).
[CrossRef]

A. L. Bris and J. F. Guillemoles, “Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts,” Appl. Phys. Lett. 97, 113506 (2010).
[CrossRef]

W. W. Chow, M. F. Pereira Jr., and S. W. Koch, “Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium,” Appl. Phys. Lett. 61, 758–760 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Lynch, D. J. Paul, P. Townsend, G. Matmon, Z. Suet, R. W. Kelsall, Z. Ikonic, P. Harrison, J. Zhang, D. J. Norris, A. G. Cullis, C. R. Pidgeon, P. Murzyn, B. Murdin, M. Bain, H. S. Gamble, M. Zhao, and W.-X. Ni, “Toward silicon-based lasers for terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 12, 1570–1578 (2006).
[CrossRef]

J. Appl. Phys. (3)

V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89, 2268–2271 (2001).
[CrossRef]

R. Nelander, A. Wacker, M. F. Pereira Jr., D. G. Revin, M. R. Soulby, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Fingerprints of spatial charge transfer in quantum cascade lasers,” J. Appl. Phys. 102, 113104 (2007).
[CrossRef]

C. Goupil, “Thermodynamics of the thermoelectric potential,” J. Appl. Phys. 106, 104907 (2009).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (5)

S. Tomić, “Intermediate-band solar cells: influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Phys. Rev. B 82, 195321 (2010).
[CrossRef]

M. F. Pereira Jr., “Intersubband antipolaritons: microscopic approach,” Phys. Rev. B 75, 195301 (2007).
[CrossRef]

J. Li and C. Z. Ning, “Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well,” Phys. Rev. B 70, 125309 (2004).
[CrossRef]

M. F. Pereira Jr. and H. Wenzel, “Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells,” Phys. Rev. B 70, 205331 (2004).
[CrossRef]

T. U.-K. Dang, C. Weber, M. Richter, and A. Knorr, “Influence of Coulomb correlations on the quantum well intersubband absorption at low temperatures,” Phys. Rev. B 82, 045305 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

G. Scalari, S. Blaser, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many body resonances and localization effects,” Phys. Rev. Lett. 93, 237403(2004).
[CrossRef] [PubMed]

Phys. Stat. Sol. B (2)

M. F. Pereira Jr. and K. Hennerberger, “Gain mechanisms and lasing in II-VI compounds,” Phys. Stat. Sol. B 202, 751–762(1997).
[CrossRef]

M. F. Pereira Jr. and K. Hennerberger, “Microscopic theory for the optical properties of Coulomb-correlated semiconductors,” Phys. Stat. Sol. B 206, 477–491 (1998).
[CrossRef]

Renew. Energy (1)

A. Feltrin and A. Freundlich, “Material considerations for terawatt. Level deployment of photovoltaics,” Renew. Energy 33, 180–185 (2008).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photocurrent generation spectra of Eq. (1). with (black solid curve) and without manybody effects (green dashed curve) for one section of a possible ISB device with 5 nm (a), (c) and 10 nm (b), (d) QW active regions with TE polarization. From the bottom to the top in (a), (b), the valence band carrier density is increased by N = 1 and 3 × 10 12 cm 2 . The thermal photon source temperature is T = 1000 K . From the bottom to the top in (c), (d), the thermal source carrier temperature is increased from T = 500 K to T = 1000 K . The valence band carrier density is N = 3 × 10 12 cm 2 .

Fig. 2
Fig. 2

Photocurrent generation spectra of Eq. (1). with (black solid curve) and without manybody effects (green dashed curve) for one section of a possible ISB device with 5 nm (a), (c) and 10 nm (b), (d) QW active regions with TM polarization. From the bottom to the top in (a), (b), the conduction band carrier density is increased by N = 1 and 3 × 10 12 cm 2 . The thermal photon source temperature is T = 1000 K . From the bottom to the top in (c), (d), the thermal source carrier temperature is increased from T = 500 K to T = 1000 K . The conduction band carrier density is N = 3 × 10 12 cm 2 .

Fig. 3
Fig. 3

Comparison of TE (black solid curve) versus TM mode at a maximum angle of incidence (green dashed curve) photocurrent generation spectra for the QWs of Figs. 1, 2. The doping density is N = 3 × 10 12 cm 2 thermalized at 300 K . The QW well widths are 5 nm for (a), (c) and 10 nm for (b), (d). The thermal source temperatures are 500 K for (a), (b) and 1000 K for (c), (d). All panels have the same relative scale to allow a direct comparison. Note that the actual TM mode absorption would be smaller due to the angles of incidence and prism/coupler losses. This means that the TM mode generation spectra would be even smaller then shown here, further supporting a study of TE valence band-based materials and designs for the far-IR.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J n ( ω ) = q z n z n + d n G n ( ω , z ) d z ,
G n ( ω , z ) = α n ( ω ) F ( ω ) [ 1 R ( ω ) ] e α n ( ω ) d n .
α n ( ω ) = 4 π ω c n b Im { χ ( ω ) } , χ ( ω ) = 2 μ ν , k μ ν χ ν , μ ( k , ω ) .
[ ω e ν μ ( k ) + i Γ ν μ ] χ ν μ ( k , ω ) δ n ν μ k k k χ ν μ ( k , ω ) V ˜ k k ν μ = ν μ ( k ) δ n ν μ k ,

Metrics