Abstract

We numerically investigated the impact of long-pitch (>800nm) metallic gratings on the absorption enhancement in thin-film photovoltaic devices. We found that gratings with such a long pitch can simultaneously enhance the absorption of TM- and TE-polarized sunlight by inducing lateral Fabry–Perot resonances of surface plasmon- polaritons and guided modes at the same time. The grating duty cycle turned out to be the most important factor in realizing the two enhancement effects in the same spectral regime. Especially for the TM light, the combined effect of long grating pitch and duty-cycle adjustment led to the formation of three plasmonic resonances that simultaneously cover the ridge and groove surfaces. All of these produced a polarization-diverse absorption enhancement corresponding to a factor of 1.171.18 increase in the photocurrent over a wide range of the grating pitch.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  2. N. C. Panoiu and R. M. Osgood, Jr., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825–2827 (2007).
    [CrossRef] [PubMed]
  3. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
    [CrossRef]
  4. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009).
    [CrossRef] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [CrossRef]
  6. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
    [CrossRef]
  7. Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010).
    [CrossRef]
  8. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
    [CrossRef] [PubMed]
  9. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
    [CrossRef]
  10. J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
    [CrossRef] [PubMed]
  11. G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infrared,” Opt. Express 16, 6867–6876 (2008).
    [CrossRef] [PubMed]
  12. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558–19565 (2010).
    [CrossRef] [PubMed]
  13. J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
    [CrossRef]
  14. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
    [CrossRef]
  15. F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
    [CrossRef]
  16. http://refractiveindex.info/.
  17. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  18. M. R. Tubbs, “MoO3 layers—optical properties, color centers and holographic recording,” Phys. Status Solidi A 21, 253–260(1974).
    [CrossRef]
  19. A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007).
    [CrossRef]
  20. Comsol Multiphysics from Comsol, Inc., USA.
  21. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
    [CrossRef]
  22. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
    [CrossRef] [PubMed]
  23. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
    [CrossRef]
  24. A. Naqavi, K. Soderstrom, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin-film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2010).
    [CrossRef]
  25. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993).
    [CrossRef] [PubMed]
  26. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [CrossRef]
  27. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
    [CrossRef] [PubMed]

2010 (6)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010).
[CrossRef]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558–19565 (2010).
[CrossRef] [PubMed]

A. Naqavi, K. Soderstrom, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin-film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2010).
[CrossRef]

2009 (6)

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

2008 (4)

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

G. Della Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infrared,” Opt. Express 16, 6867–6876 (2008).
[CrossRef] [PubMed]

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
[CrossRef]

A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Jr., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32, 2825–2827 (2007).
[CrossRef] [PubMed]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

2006 (1)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

1993 (1)

1974 (1)

M. R. Tubbs, “MoO3 layers—optical properties, color centers and holographic recording,” Phys. Status Solidi A 21, 253–260(1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Bai, W.

Ballif, C.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Bartoli, F.

Blom, P. W. M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Bozhevolnyi, S. I.

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Cai, L.

Chang, J. Y.

Chen, F. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Chen, H. M. P.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Chen, L.-M.

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

Chen, W. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

De Boer, B.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Deng, D.

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

Dorfmuller, J.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Fan, Z.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

Gan, Q.

Haug, F.-J.

Herzig, H. P.

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

Hong, Z.

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Huang, C. F.

Huang, J.

J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
[CrossRef]

Huang, W. C.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Huang, Y.

Hummelen, J. C.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Inganas, O.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kern, K.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Knipp, D.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

Kroon, R.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Lederer, F.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Lee, C. L.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lee, Y. C.

Lenes, M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Li, G.

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Liu, S.

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

Magnusson, R.

Meerholz, K.

A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Moule, A. J.

A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007).
[CrossRef]

Naqavi, A.

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

Osgood, R. M.

Paeder, V.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Panoiu, N. C.

Persson, N.-K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

Pertsch, T.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Rahachou, A.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

Rockstuhl, C.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Romanato, F.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

Sammito, D.

Scharf, T.

Shao, J.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

Shen, J.

Soderstrom, K.

Sondergaard, T.

Song, G.

Sun, Z.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010).
[CrossRef]

Tubbs, M. R.

M. R. Tubbs, “MoO3 layers—optical properties, color centers and holographic recording,” Phys. Status Solidi A 21, 253–260(1974).
[CrossRef]

Tvingstedt, K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

Valle, G. Della

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

Vogelgesang, R.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Wang, S. S.

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

Wei, C.

Weitz, R. T.

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Wu, J. L.

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

Wu, M. L.

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

Xu, Z.

J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
[CrossRef]

Yang, Y.

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
[CrossRef]

Zacco, G.

Zhang, J.

Zilio, P.

Zozoulenko, I. V.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

Zuo, X.

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

J. Huang, Z. Xu, and Y. Yang, “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17, 1966–1973 (2007).
[CrossRef]

Adv. Mater. (2)

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett. 91, 061901 (2007).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enahncement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
[CrossRef]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308(2008).
[CrossRef]

IEEE Electron Device Lett. (1)

F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible polymer photovoltaic devices prepared with inverted structures on metal foils,” IEEE Electron Device Lett. 30, 727–729 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

J. Appl. Phys. (1)

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

Nano Lett. (2)

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012–2018 (2010).
[CrossRef] [PubMed]

J. Dorfmuller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry–Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi A (1)

M. R. Tubbs, “MoO3 layers—optical properties, color centers and holographic recording,” Phys. Status Solidi A 21, 253–260(1974).
[CrossRef]

Plasmonics (1)

Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on metal surface with interspaced ultra-thin metal gratings,” Plasmonics 6, 83–89 (2010).
[CrossRef]

Polymer Revs. (1)

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last five years),” Polymer Revs. 48, 531–582 (2008).
[CrossRef]

Other (2)

Comsol Multiphysics from Comsol, Inc., USA.

http://refractiveindex.info/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the model thin-film OPV device structure with a long-pitch Ag grating functioning dually as the bottom electrode. Major structural parameters are also specified along with the directions of electric field oscillation in TM and TE incoming waves.

Fig. 2
Fig. 2

(a) 2D plot of EF TM as a function of the grating duty cycle D and the grating pitch Λ. EF TM exhibits a stronger dependence on D by forming a narrow band within which its values are abruptly raised. The arrow points to the D / Λ combination corresponding to the maximum EF TM . (b)  EF TM corresponding to the region within the dotted box of (a) plotted in 3D for a clearer view of the high EF TM band within 0.35 < D < 0.45 . The arrow indicates the maximum EF TM point.

Fig. 3
Fig. 3

(a) Absorption spectrum obtained from an OPV device while the structural parameters of its grating were set to induce maximum EF TM ( D = 0.36 , Λ = 1040 nm ). For comparison, absorption spectra from the same OPV device with no grating ridge ( h = 0 ) and a grating with its structural parameters outside the high EF TM band ( D = 0.5 ) were also superimposed. It is clear that the absorption enhancement comes from the formation of three absorption peaks in the long-wavelength ( λ o > 650 nm ) regime. (b) Another set of absorption spectra obtained from an OPV device with a grating with slightly shorter Λ ( 950 nm ) exhibit the same trend in which the formation of the three peaks near D = 0.35 increases the overall absorption.

Fig. 4
Fig. 4

Normalized field patterns of E z obtained at the absorption peaks of M 1 , M 2 , and M 3 in Fig. 3a. At M 1 , the main lateral plasmonic FP resonance occurs only on the top surface of the grating ridge. On the other hand, it occurs only within the groove surrounded by the ridge walls at M 3 . At the intermediate point of M 2 , the plasmonic resonance covers both the ridge and groove surfaces.

Fig. 5
Fig. 5

(a) Absorption spectrum for Λ = 1040 nm plotted as a function of D to show the changes in the absorption peaks M 1 , M 2 , and M 3 around the optimum D value of 0.36. It clearly indicates that the maximum EF TM was achieved at a D value along which all three of the absorption peaks are included at their greatest widths. The dots in (b) and (c) show the changes in the peak wavelength of the plasmonic FP resonance as a function of the width of the resonators, i.e., the ridge and the groove, respectively. The curve-fit results based on Eq. (2) (solid lines) agree well with the simulation results (dots).

Fig. 6
Fig. 6

(a) 3D plot of EF TE as a function of D and Λ. For Λ > 800 nm , EF TE also forms a narrow band within 0.43 < D < 0.53 . (b) Absorption spectrum obtained at the maximum EF TE point ( D = 0.45 , Λ = 850 nm ). Similarly to Fig. 3, the formation of an absorption peak is responsible for the overall improvement in the TE absorption. (c) 2D plot of the absorption as a function of D and Λ. The two dotted lines indicate the position of the high EF TE band of (a) within which the absorption peak near λ o = 725 nm becomes widest.

Fig. 7
Fig. 7

(a) Schematic diagram for the grating-based guided-mode excitation scheme. The inset shows the E z field pattern of one guided mode, confirming that the ITO / MoO 3 / OPV layers function as the waveguide in combination. (b) Final diffraction angle θ 2 plotted as a function of wavelength based on Eq. (3). θ c indicates the critical angle at the waveguide–air interface that must be exceeded for waveguiding.

Fig. 8
Fig. 8

(a) The overall enhancement factor EF for unpolarized incoming light. It is clear that EF retains all the salient features of EF TM and EF TE shown in (b) and (c), respectively. There are two major regions of high EF: one near the overlap of high EF TM and EF TE bands ( D 0.43 ), the other near the lower edge of the high EF TM band ( D 0.36 ) which includes the peak values of EF TM . The plot indicates that a polarization-diverse absorption enhancement can be achieved over a wide range of Λ in the long-pitch regime.

Tables (1)

Tables Icon

Table 1 Changes in EF due to ± 5 % Deviations in the OPV Layer Thickness and the Real Part of Its Refractive Index

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J SC = q · A ( λ o ) · Φ ( λ o ) d λ o
2 π · n SPP · L / λ FP = m · π + φ ,
θ 2 = asin ( ( m 1 + m 2 ) · λ 0 / ( n WG Λ ) ) ,

Metrics