Abstract

We experimentally observe the interplay among coexisting multiwave-mixing (MWM) signals via multiple electromagnetically induced transparency (EIT) windows, including two ladder-type EIT windows and one V-type EIT-like window in a five-level atomic system of Rb85. In the presence of these EIT windows, one can control the interplay between these MWM signals easily by changing the frequency detuning. Meanwhile, we also report the spatial and temporal interferences with a femtosecond time scale among three coexisting MWM signals in two overlapped EIT windows.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shariar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
    [CrossRef] [PubMed]
  2. T. T. Grove, M. S. Shariar, P. R. Hemmer, P. Kumar, V. S. Sudarshanam, and M. Cronin-Golomb, “Distortion-free gain and noise correlation in sodium vapor with four-wave mixing and coherent population trapping,” Opt. Lett. 22, 769–771(1997).
    [CrossRef] [PubMed]
  3. E. A. Korsunsky, W. Maichen, and L. Windholz, “Dynamics of coherent optical pumping in a sodium atomic beam,” Phys. Rev. A 56, 3908–3915 (1997).
    [CrossRef]
  4. B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23, 804–806 (1998).
    [CrossRef]
  5. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  6. Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
    [CrossRef] [PubMed]
  7. M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
    [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  9. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef] [PubMed]
  10. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  11. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [CrossRef] [PubMed]
  12. M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
    [CrossRef]
  13. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
    [CrossRef] [PubMed]
  14. Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
    [CrossRef] [PubMed]
  15. Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
    [CrossRef] [PubMed]
  16. Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
    [CrossRef]
  17. K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
    [CrossRef]
  18. S. Saito and I. Ohmine, “Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids CS2 and H2O,” Phys. Rev. Lett. 88, 207401 (2002).
    [CrossRef] [PubMed]
  19. H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
    [CrossRef] [PubMed]
  20. M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]

2009 (1)

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

2007 (2)

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
[CrossRef] [PubMed]

2006 (1)

H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef] [PubMed]

2003 (2)

K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
[CrossRef]

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Saito and I. Ohmine, “Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids CS2 and H2O,” Phys. Rev. Lett. 88, 207401 (2002).
[CrossRef] [PubMed]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (3)

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shariar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

1991 (1)

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Anderson, B.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

André, A.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Brown, A. W.

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
[CrossRef] [PubMed]

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Burkett, W. H.

Cronin-Golomb, M.

Donoghue, J.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eisaman, M. D.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Grove, T. T.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

Imamoglu, A.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Inoue, H.

M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
[CrossRef]

Jin, S. Z.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Katz, D. P.

Khadka, U.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Korsunsky, E. A.

E. A. Korsunsky, W. Maichen, and L. Windholz, “Dynamics of coherent optical pumping in a sodium atomic beam,” Phys. Rev. A 56, 3908–3915 (1997).
[CrossRef]

Kubarych, K. J.

K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
[CrossRef]

Kumar, P.

Li, Y.

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

Li, Y. Q.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lü, B.

Lukin, M. D.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

Maichen, W.

E. A. Korsunsky, W. Maichen, and L. Windholz, “Dynamics of coherent optical pumping in a sodium atomic beam,” Phys. Rev. A 56, 3908–3915 (1997).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Matsko, A. B.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

Michinel, H.

H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef] [PubMed]

Miller, R. J. D.

K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
[CrossRef]

Milne, C. J.

K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
[CrossRef]

Ohmine, I.

S. Saito and I. Ohmine, “Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids CS2 and H2O,” Phys. Rev. Lett. 88, 207401 (2002).
[CrossRef] [PubMed]

Paz-Alonso, M. J.

H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef] [PubMed]

Perez-Garcia, V. M.

H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef] [PubMed]

Phillips, D. F.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Saito, S.

S. Saito and I. Ohmine, “Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids CS2 and H2O,” Phys. Rev. Lett. 88, 207401 (2002).
[CrossRef] [PubMed]

Scully, M. O.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

Shariar, M. S.

Sudarshanam, V. S.

van der Wal, C. H.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

Walsworth, R. L.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Windholz, L.

E. A. Korsunsky, W. Maichen, and L. Windholz, “Dynamics of coherent optical pumping in a sodium atomic beam,” Phys. Rev. A 56, 3908–3915 (1997).
[CrossRef]

Xiao, M.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
[CrossRef] [PubMed]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping,” Opt. Lett. 23, 804–806 (1998).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

Yamashita, M.

M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
[CrossRef]

Zhang, Y. P.

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
[CrossRef] [PubMed]

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Zibrov, A. S.

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. P. Zhang, B. Anderson, A. W. Brown, and M. Xiao, “Competition between two four-wave mixing channels via atomic coherence,” Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Int. Rev. Phys. Chem. (1)

K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state,” Int. Rev. Phys. Chem. 22, 497–532 (2003).
[CrossRef]

Nature (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (3)

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

M. Mitsunaga, M. Yamashita, and H. Inoue, “Absorption imaging of electromagnetically induced transparency in cold sodium atoms,” Phys. Rev. A 62, 013817 (2000).
[CrossRef]

E. A. Korsunsky, W. Maichen, and L. Windholz, “Dynamics of coherent optical pumping in a sodium atomic beam,” Phys. Rev. A 56, 3908–3915 (1997).
[CrossRef]

Phys. Rev. Lett. (9)

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603(2007).
[CrossRef] [PubMed]

Y. P. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009).
[CrossRef] [PubMed]

S. Saito and I. Ohmine, “Off-resonant fifth-order response function for two-dimensional Raman spectroscopy of liquids CS2 and H2O,” Phys. Rev. Lett. 88, 207401 (2002).
[CrossRef] [PubMed]

H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006).
[CrossRef] [PubMed]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82, 1847–1850 (1999).
[CrossRef]

Science (1)

C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental atomic system. (b) Square box pattern beam geometry used in the experiment. (c) Dressed-state picture for the experimental atomic system.

Fig. 2
Fig. 2

Different MWM signals (upper curves) and the probe transmission signals (lower curves) versus Δ 1 by blocking different laser beams. (a1) With E 2 , E 2 , and E 4 blocked, (a2) with E 2 and E 4 blocked, (a3) with E 2 and E 2 blocked, and (a4) with E 2 blocked. (b1)–(b3) Different MWM signals and the probe transmission signals corresponding to different hyperfine-level transitions (the left signals from Rb 85 | 5 S 1 / 2 , F = 2 and the right signals from Rb 85 | 5 S 1 / 2 , F = 3 ) versus Δ 1 . The conditions of blocking laser beams are the same as in (a1)–(a3). (c1)–(c3) Simplified level diagrams of the MWM signals E F 1 , E S 1 , and E S 2 . (d1)–(d3) Phase-matching diagrams of E F 1 , E S 1 , and E S 2 . The thin dotted line represents that the MWM process ( E F 1 ) is not Doppler free, and the thick long-dashed line represents that the MWM process ( E S 1 or E S 2 ) is Doppler free.

Fig. 3
Fig. 3

Interplay between two MWM signals. (a1)–(a7) Probe transmission signals (lower curves) and measured MWM signals (upper curves including the fixed E F 1 peaks along the left dotted line, the fixed E S 1 peaks along the right dotted line, and the shifting E S 2 peaks) versus Δ 1 for different Δ 4 values. (b1)–(b7) Probe transmission signals (lower curves) and measured MWM signals (upper curves including the fixed E F 1 peaks along the dotted line and the shifting E S 1 peaks) versus Δ 1 for different Δ 2 values. (c1)–(c7) Probe transmission signals (lower curves) and measured MWM signals (upper curves including the fixed E F 1 peaks along the dotted line and the shifting E S 2 peaks) versus Δ 1 for different Δ 4 values.

Fig. 4
Fig. 4

(a) Three-dimensional spatiotemporal interferogram of the total FWM and SWM signal intensity I ( τ , r ) versus time delay τ and transverse position r. (b) Cross section of the spatiotemporal interferogram on the time plane ( r = 0 ) (square points are experimental data, and the solid curve is the theoretically simulated result).

Tables (1)

Tables Icon

Table 1 Phase-Matching Conditions and Liouville Pathways of Coexisting FWM and SWM Processes

Metrics