Abstract

Azo-dye-doped liquid crystal elastomers (LCEs) are known to show a strong photomechanical response. We report on experiments that suggest that photothermal heating is the underlying mechanism in surface-constrained geometry. In particular, we use optical interferometry to probe the length change of the material and direct temperature measurements to determine heating. LCEs with various dopants and optical density were used to study the individual mechanisms. In the high dye-doped limit, most of the light is absorbed near the entry surface, which causes a local strain from photothermal heating and a nonlocal strain from thermal diffusion. The results of our research on the microscopic mechanisms of the photomechanical response can be applied to designing photomechanical materials for actuating/sensing devices, the potential basis of smart structures.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer

Nathan J. Dawson, Mark G. Kuzyk, Jeremy Neal, Paul Luchette, and Peter Palffy-Muhoray
J. Opt. Soc. Am. B 28(9) 2134-2141 (2011)

Optically activated cantilever using photomechanical effects in dye-doped polymer fibers

Shaoping Bian, Dirk Robinson, and Mark G. Kuzyk
J. Opt. Soc. Am. B 23(4) 697-708 (2006)

Co-extruded mechanically tunable multilayer elastomer laser

Guilin Mao, James Andrews, Michael Crescimanno, Kenneth D. Singer, Eric Baer, Anne Hiltner, Hyunmin Song, and Bijayandra Shakya
Opt. Mater. Express 1(1) 108-114 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription