Abstract

Azo-dye-doped liquid crystal elastomers (LCEs) are known to show a strong photomechanical response. We report on experiments that suggest that photothermal heating is the underlying mechanism in surface-constrained geometry. In particular, we use optical interferometry to probe the length change of the material and direct temperature measurements to determine heating. LCEs with various dopants and optical density were used to study the individual mechanisms. In the high dye-doped limit, most of the light is absorbed near the entry surface, which causes a local strain from photothermal heating and a nonlocal strain from thermal diffusion. The results of our research on the microscopic mechanisms of the photomechanical response can be applied to designing photomechanical materials for actuating/sensing devices, the potential basis of smart structures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “On the production and reproduction of sound by light,” in Proceedings of the American Association for the Advancement of Science, F.W.Putnam, ed. (Salem, 1881), pp. 115–136.
  2. K. Uchino, “Ceramic actuators: principles and applications,” Mater. Res. Soc. Bull. 29, 42–48 (1993).
  3. K. Uchino, “Photostrictive actuator,” in Ultrasonics Symposium (IEEE, 1990), pp. 721–723.
    [CrossRef]
  4. K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
    [CrossRef]
  5. D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
    [CrossRef]
  6. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol. 117 of Optical Science and Engineering (CRC Press, 2006), pp. 334–342.
  7. D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
    [CrossRef]
  8. D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
    [CrossRef]
  9. D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
    [CrossRef]
  10. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
    [CrossRef] [PubMed]
  11. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
    [CrossRef] [PubMed]
  12. S. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye-doped polymer fibers,” J. Opt. Soc. Am. B 23, 697–708 (2006).
    [CrossRef]
  13. M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
    [CrossRef]
  14. P. L. Chu, “Polymer optical fiber Bragg gratings,” Opt. Photon. News 16(7), 53–56 (2005).
    [CrossRef]
  15. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23, 1826–1828 (1998).
    [CrossRef]
  16. M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.
  17. N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
    [CrossRef]

2011 (1)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

2009 (1)

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

2006 (1)

2005 (1)

P. L. Chu, “Polymer optical fiber Bragg gratings,” Opt. Photon. News 16(7), 53–56 (2005).
[CrossRef]

2004 (1)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

2001 (1)

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

1995 (1)

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

1994 (1)

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

1993 (1)

K. Uchino, “Ceramic actuators: principles and applications,” Mater. Res. Soc. Bull. 29, 42–48 (1993).

1991 (1)

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[CrossRef]

1980 (1)

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” in Proceedings of the American Association for the Advancement of Science, F.W.Putnam, ed. (Salem, 1881), pp. 115–136.

Bian, S.

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Canfield, B. K.

Chu, P. L.

P. L. Chu, “Polymer optical fiber Bragg gratings,” Opt. Photon. News 16(7), 53–56 (2005).
[CrossRef]

Corbett, D.

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

Cross, E. L.

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

Dawson, N. J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Dirk, C. W.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[CrossRef]

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Garvey, D. W.

Kuzyk, M. G.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

S. Bian, D. Robinson, and M. G. Kuzyk, “Optically activated cantilever using photomechanical effects in dye-doped polymer fibers,” J. Opt. Soc. Am. B 23, 697–708 (2006).
[CrossRef]

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23, 1826–1828 (1998).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[CrossRef]

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol. 117 of Optical Science and Engineering (CRC Press, 2006), pp. 334–342.

M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.

Luchette, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Neal, J.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Nishikawa, E.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Paek, U. C.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[CrossRef]

Palffy-Muhoray, P.

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Pereira, G. G.

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Robinson, D.

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Tostenrude, J.

Uchino, K.

K. Uchino, “Ceramic actuators: principles and applications,” Mater. Res. Soc. Bull. 29, 42–48 (1993).

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

K. Uchino, “Photostrictive actuator,” in Ultrasonics Symposium (IEEE, 1990), pp. 721–723.
[CrossRef]

Warner, M.

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Welker, D. J.

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23, 1826–1828 (1998).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

Appl. Phys. Lett. (4)

D. J. Welker and M. G. Kuzyk, “Optical and mechanical multistability in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 66, 2792–2794 (1995).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “All-optical switching in a dye-doped polymer fiber Fabry-Perot waveguide,” Appl. Phys. Lett. 69, 1835–1836 (1996).
[CrossRef]

D. J. Welker and M. G. Kuzyk, “Photomechanical stabilization in a polymer fiber-based all-optical circuit,” Appl. Phys. Lett. 64, 809–811 (1994).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902–904 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Uchino and E. L. Cross, “Electrostriction and its interrelation with other anharmonic properties of materials,” Jpn. J. Appl. Phys. 19, L171–L173 (1980).
[CrossRef]

Liq. Cryst. (1)

D. Corbett and M. Warner, “Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials,” Liq. Cryst. 36, 1263–1280 (2009).
[CrossRef]

Mater. Res. Soc. Bull. (1)

K. Uchino, “Ceramic actuators: principles and applications,” Mater. Res. Soc. Bull. 29, 42–48 (1993).

Nat. Mater. (1)

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3, 307–310 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. J. Dawson, M. G. Kuzyk, J. Neal, P. Luchette, and P. Palffy-Muhoray, “Cascading of liquid crystal elastomer photomechanical optical devices,” Opt. Commun. 284, 991–993 (2011).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

P. L. Chu, “Polymer optical fiber Bragg gratings,” Opt. Photon. News 16(7), 53–56 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87, 015501 (2001).
[CrossRef] [PubMed]

Other (4)

K. Uchino, “Photostrictive actuator,” in Ultrasonics Symposium (IEEE, 1990), pp. 721–723.
[CrossRef]

A. G. Bell, “On the production and reproduction of sound by light,” in Proceedings of the American Association for the Advancement of Science, F.W.Putnam, ed. (Salem, 1881), pp. 115–136.

M. G. Kuzyk, “Tutorial on using photo-mechanical effects to make smart materials,” http://www.nlosource.com/PhotoMechHistory.html.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications, Vol. 117 of Optical Science and Engineering (CRC Press, 2006), pp. 334–342.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chemical structures of the silicon backbone, crosslinker, mesogenic sidechain, disperse orange 3 dopant chromophore, and disperse orange 11 dopant chromophore that are used to construct the dye-doped LCEs.

Fig. 2
Fig. 2

Schematic diagram of the experiment used to illuminate a LCE and to measure its length change using the interferogram pattern of the reference beam.

Fig. 3
Fig. 3

Measured transmitted probe beam intensity through the integrated Fabry–Perot interferometer, where the LCE is illuminated uniformly across its surface with a pump power of 32.6 mW .

Fig. 4
Fig. 4

Degree of length contraction and temperature increase as a function of time for a DO3- and DO11-doped LCE. Inset shows a diagram of the sensor placement in the LCE.

Fig. 5
Fig. 5

Degree of length contraction and temperature change as a function of time for a 0.02% by weight DO3-doped LCE at two different laser powers.

Fig. 6
Fig. 6

Length contraction and temperature change as a function of time for a 0.1% by weight DO3-doped LCE over various laser powers at a wavelength of 647.1 nm .

Fig. 7
Fig. 7

Temperature dependence of the length contraction as a function of time for a high-concentration DO3-doped LCE with an initial length of L 0 250 μm .

Fig. 8
Fig. 8

(a) Laser on: empirical fit with k = 10.43 ± 0.48 nm / mW , γ = 14.88 ± 2.58 s 1 , and ϕ = 0.63 ± 0.75 . (b) Laser off: empirical fit with k = 9.59 ± 0.36 nm / mW , γ = 28.59 ± 5.58 s 1 , and ϕ = 1.46 ± 1.47 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ = 1 l ln I I 0 ,
μ ( Q ) = μ ( Q = 0 ) 2 3 ( 1 Q ) .
I = I 0 e μ z ,
H s = α d I d z ,
Δ L = k P ln ( γ t + ϕ ) ,

Metrics