Abstract

The profile reshaping for a Gaussian beam reflected from a symmetrical metal-cladding waveguide is studied numerically and experimentally. For the thick guiding film, the distortion of a beam with very narrow frequency distribution is remarkable when the center wavelength of the beam locates in the resonant dip. This result compels us to question the validity of the method of using a position sensitive detector to measure the larger Goos-Hänchen (GH) shift. Therefore, a CCD is introduced to observe and record in real time the profile of the reflected beam, and the experiment conforms well to the simulations. The shaping technique developed in this paper promises much potential for optics devices based on the GH effect.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalflexion,” Ann. Phys. 436, 333-346 (1947).
    [CrossRef]
  2. F. Goos and H. Hänchen, “Neumessung des strahlversetzugseffektes bei totalreflexion,” Ann. Phys. 440, 251-252 (1949).
    [CrossRef]
  3. J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
    [CrossRef]
  4. X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
    [CrossRef]
  5. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32, 1432-1434 (2007).
    [CrossRef]
  6. J. He, J. Yi, and S. He, “Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express 14, 3024-3029 (2006).
    [CrossRef]
  7. L. Wang, H. Chen, and S. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30, 2936-2938 (2005).
    [CrossRef]
  8. X. Chen and C. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E 69, 066617 (2004).
    [CrossRef]
  9. T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
    [CrossRef]
  10. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
    [CrossRef]
  11. X. Yin and L. Hessenlink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
    [CrossRef]
  12. K. Artman, “Berechnung der seitenversetzung des totalreflektierten strahles,” Ann. Phys. 437, 87-102 (1948).
    [CrossRef]
  13. X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
    [CrossRef]
  14. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
    [CrossRef]
  15. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
    [CrossRef]
  16. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
    [CrossRef]
  17. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Phys. Rep. 436, 1-69 (2006).
    [CrossRef]
  18. W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189-191 (1981).
    [CrossRef]
  19. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325-1337(1970).
    [CrossRef]

2010 (1)

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

2008 (1)

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

2007 (1)

2006 (3)

X. Yin and L. Hessenlink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Phys. Rep. 436, 1-69 (2006).
[CrossRef]

J. He, J. Yi, and S. He, “Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express 14, 3024-3029 (2006).
[CrossRef]

2005 (1)

2004 (3)

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

X. Chen and C. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E 69, 066617 (2004).
[CrossRef]

2000 (2)

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
[CrossRef]

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

1983 (1)

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
[CrossRef]

1981 (1)

1970 (1)

1949 (1)

F. Goos and H. Hänchen, “Neumessung des strahlversetzugseffektes bei totalreflexion,” Ann. Phys. 440, 251-252 (1949).
[CrossRef]

1948 (1)

K. Artman, “Berechnung der seitenversetzung des totalreflektierten strahles,” Ann. Phys. 437, 87-102 (1948).
[CrossRef]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalflexion,” Ann. Phys. 436, 333-346 (1947).
[CrossRef]

Artman, K.

K. Artman, “Berechnung der seitenversetzung des totalreflektierten strahles,” Ann. Phys. 437, 87-102 (1948).
[CrossRef]

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Birman, J. L.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
[CrossRef]

Cao, Z.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32, 1432-1434 (2007).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

Chen, H.

Chen, J. M.

Chen, L.

Chen, W. P.

Chen, X.

X. Chen and C. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E 69, 066617 (2004).
[CrossRef]

Fang, N.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

Goos, F.

F. Goos and H. Hänchen, “Neumessung des strahlversetzugseffektes bei totalreflexion,” Ann. Phys. 440, 251-252 (1949).
[CrossRef]

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalflexion,” Ann. Phys. 436, 333-346 (1947).
[CrossRef]

Hänchen, H.

F. Goos and H. Hänchen, “Neumessung des strahlversetzugseffektes bei totalreflexion,” Ann. Phys. 440, 251-252 (1949).
[CrossRef]

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalflexion,” Ann. Phys. 436, 333-346 (1947).
[CrossRef]

He, J.

He, S.

He, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Hesselink, L.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

Hessenlink, L.

X. Yin and L. Hessenlink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

Kwok, C. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

Lai, H. M.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

Li, C.

X. Chen and C. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E 69, 066617 (2004).
[CrossRef]

Li, H.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32, 1432-1434 (2007).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

Li, T.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Liu, X.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Liu, Z.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

Loo, Y. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Ou, F.

Pattanayak, D. N.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
[CrossRef]

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Puri, A.

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
[CrossRef]

Qiao, H.

Qiao, Z.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Sakata, T.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
[CrossRef]

Shen, Q.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32, 1432-1434 (2007).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

Shimokawa, F.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

Tien, P. K.

Togo, H.

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
[CrossRef]

Ulrich, R.

Wang, L.

Wang, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Winful, H. G.

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Phys. Rep. 436, 1-69 (2006).
[CrossRef]

Xu, B. Y.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

Yang, Q.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Yi, J.

Yin, X.

X. Yin and L. Hessenlink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

Yu, T.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Zhang, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

Zhu, P.

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Zhu, S.

Ann. Phys. (3)

K. Artman, “Berechnung der seitenversetzung des totalreflektierten strahles,” Ann. Phys. 437, 87-102 (1948).
[CrossRef]

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalflexion,” Ann. Phys. 436, 333-346 (1947).
[CrossRef]

F. Goos and H. Hänchen, “Neumessung des strahlversetzugseffektes bei totalreflexion,” Ann. Phys. 440, 251-252 (1949).
[CrossRef]

Appl. Phys. Lett. (5)

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374(2004).
[CrossRef]

T. Sakata, H. Togo, and F. Shimokawa, “Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect,” Appl. Phys. Lett. 76, 2841-2843 (2000).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

X. Yin and L. Hessenlink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579-4581 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

X. Liu, Q. Yang, Z. Qiao, T. Li, P. Zhu, and Z. Cao, “Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system,” Opt. Commun. 283, 2681-2685 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rep. (1)

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Phys. Rep. 436, 1-69 (2006).
[CrossRef]

Phys. Rev. E (2)

X. Chen and C. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E 69, 066617 (2004).
[CrossRef]

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330-7338 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a resonance-enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50, 1664-1667(1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics