Abstract

By using indirect coupling between two side-coupled cavities, we propose a method to enhance the resonant transmission contrast ratio in the lossy metal–dielectric–metal waveguide cavity system. We find that the dual side-coupled cavity structure has higher on-resonance transmission contrast ratio than the single side-coupled cavity structure for involving more coherent interfering paths. The filter operating around the wavelength of 1550nm is analyzed based on coupled-mode theory, and the optimal on-resonance transmission contrast condition is obtained. Numerical experiments confirm the enhancement of the resonant contrast.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–40 (2007).
    [Crossref] [PubMed]
  3. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
    [Crossref]
  4. B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [Crossref]
  5. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [Crossref]
  6. T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
    [Crossref] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
    [Crossref] [PubMed]
  8. S. Darmawan, Landobasa Y. M. Tobing, and T. Mei, “Coupling-induced phase shift in a microring-coupled Mach–Zehnder interferometer,” Opt. Lett. 35, 238–240 (2010).
    [Crossref] [PubMed]
  9. L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
    [Crossref]
  10. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
    [Crossref]
  11. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
    [Crossref]
  12. J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
    [Crossref]
  13. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
    [Crossref]
  14. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
    [Crossref] [PubMed]
  15. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  16. Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
    [Crossref]
  17. C. J. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [Crossref] [PubMed]
  18. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
    [Crossref]
  19. Z. Wen. Kang, W. H. Lin, and G. P. Wang, “Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices,” J. Opt. Soc. Am. B 26, 1944–1945 (2009).
    [Crossref]
  20. X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
    [Crossref]
  21. H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [Crossref]
  22. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
    [Crossref]
  23. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]

2011 (1)

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

2010 (3)

S. Darmawan, Landobasa Y. M. Tobing, and T. Mei, “Coupling-induced phase shift in a microring-coupled Mach–Zehnder interferometer,” Opt. Lett. 35, 238–240 (2010).
[Crossref] [PubMed]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

2009 (5)

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

C. J. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Z. Wen. Kang, W. H. Lin, and G. P. Wang, “Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices,” J. Opt. Soc. Am. B 26, 1944–1945 (2009).
[Crossref]

2008 (2)

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[Crossref] [PubMed]

Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–40 (2007).
[Crossref] [PubMed]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
[Crossref]

2005 (2)

T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[Crossref] [PubMed]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

2004 (1)

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

1991 (1)

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

Dai, Q. F.

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Darmawan, S.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–40 (2007).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fan, S. H.

Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Fang, G. Y.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Fukui, M.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–40 (2007).
[Crossref] [PubMed]

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Gray, S.

Green, W. M. J.

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

Han, Z.

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Haraguchi, M.

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Herman, W. N.

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

Ho, P. T.

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

Huang, W. P.

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Huang, X. G.

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Huang, Y.

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

Jin, X. P.

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Kang, Z. Wen.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

Lan, S.

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Lee, T.

Lin, W. H.

Lin, X. S.

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Liu, J. L.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Liu, L.

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
[Crossref]

Liu, S. T.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Matsuzaki, Y.

Mei, T.

Min, C. J.

Nakagaki, M.

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Okamoto, T.

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Qiu, M.

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
[Crossref]

Tao, J.

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Tobing, Landobasa Y. M.

Van, V.

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

Veronis, G.

C. J. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

Wang, B.

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, G.

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

Wang, G. P.

Wang, Z.

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[Crossref]

Wu, L. J.

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Xiao, S. S.

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
[Crossref]

Xu, Y.

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Yan, J. H.

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

Yariv, A.

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

Yu, Z. F.

Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Zhang, Q.

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Zhang, Y.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Zhao, H. F.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Zheng, Y. B.

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

Zhong, Z. J.

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Zhu, L.

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

Appl. Phys. Lett. (3)

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Z. F. Yu, G. Veronis, and S. H. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhang, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D 43, 055103 (2010).
[Crossref]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–40 (2007).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–509 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020(2009).
[Crossref]

Opt. Express (9)

T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[Crossref] [PubMed]

L. Zhu, Y. Huang, W. M. J. Green, A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12, 6373–6374 (2004).
[Crossref]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 81–82 (2010).
[Crossref]

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17, 12680–12684 (2009).
[Crossref]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters plasmon-polaritons metal,” Opt. Express 14, 2934–2937(2006).
[Crossref]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[Crossref] [PubMed]

X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9597–9599 (2011).
[Crossref]

C. J. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7550–7553 (2009).
[Crossref]

Opt. Lett. (1)

Phys. Rev. E (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Representative geometry of the SSCC structure with cavity length L = 600 nm , width W = 110 nm , gap width d = 28 nm , and waveguide width D = 50 nm . (b) The transmission spectrum (dB) of the SSCC structure.

Fig. 2
Fig. 2

Representative geometry of the DSCC structure with cavity length L = 600 nm , width W = 110 nm , gap width d = 28 nm , and waveguide width D = 50 nm .

Fig. 3
Fig. 3

(a) Transmission map for different length between two cavities centers L . Inset is the corresponding side view. (b) Transmission dip ( T min ) versus L . The cavity parameters are set to be L = 600 nm , W = 110 nm , d = 28 nm , and D = 50 nm .

Fig. 4
Fig. 4

(a) Transmission (dB) of the DSCC (blue solid curve) and the SSCC (red dashed curve) structure with the resonant wavelength of 1550 nm . (b) Shift of resonant wavelengths with L = 580 nm (pink dotted curve), 600 nm (blue solid curve), and 620 nm (green dash curve), respectively. Other parameters are fixed as W = 110 nm , d = 28 nm , and L = 800 nm .

Fig. 5
Fig. 5

Steady distributions of the magnetic field for the (a) SSCC structure with λ in = 1550 nm , (b) DSCC structure with λ in = 1550 nm , and (c) DSCC structure with λ in = 1310 nm . Both the SSCC and the DSCC structures are set as follows: L = 600 nm , W = 110 nm , d = 28 nm , D = 50 nm , and L = 800 nm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε d k z 2 + ε m k z 1 tanh ( i k z 1 2 D ) = 0 ,
ε m ( ω ) = ε ω P 2 ω 2 + i Γ ω ,
T = ( ω ω 0 ) 2 + ( 1 τ 0 ) 2 ( ω ω 0 ) 2 + ( 1 τ 0 + 1 τ e ) 2 ,
t = e i φ [ i ( ω ω 0 ) + 1 τ 0 ] 2 [ i ( ω ω 0 ) + 1 τ 0 + 1 τ e ] 2 e 2 i φ ( 1 τ e ) 2 ,
T min = ( 1 τ 0 ) 4 ( 1 τ 0 + 1 τ e ) 4 + ( 1 τ e ) 2 2 cos ( 2 φ ) ( 1 τ 0 + 1 τ e ) 2
Δ φ = K ( ω ) L + ϕ r = m 2 π ,

Metrics