Abstract

We study tellurite glasses as the Raman gain media for the soliton self-frequency shift (SSFS). The Raman response function, Raman fraction, and Raman time constant of tellurite glasses are obtained from the Raman gain spectra. We evaluate the performance of SSFS based on the Raman gain coefficient spectra and generalized nonlinear Schrödinger equation. Our results show that the amount of SSFS is directly proportional to the Raman time constant. The most efficient tellurite glass for SSFS is clarified. It is shown that the tellurite glasses are promising materials for nonlinear optics applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
    [CrossRef]
  2. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [CrossRef]
  3. M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006).
    [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
    [CrossRef] [PubMed]
  5. M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tenability,” Opt. Lett. 34, 842–844 (2009).
    [CrossRef] [PubMed]
  6. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
    [CrossRef]
  7. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656 (2008).
    [CrossRef] [PubMed]
  8. R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
    [CrossRef]
  9. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band tellurite-based fiber Raman amplifier,” J. Lightwave Technol. 21, 1300–1306 (2003).
    [CrossRef]
  10. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardon, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett. 28, 1126–1128 (2003).
    [CrossRef] [PubMed]
  11. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  13. E. E. Serebryannikov, C. Rivero, R. Stegeman, and A. M. Zheltikov, “Soliton transients and supercontinuum generation in high-Raman-gain material,” J. Opt. Soc. Am. B 24, 137–141(2007).
    [CrossRef]
  14. M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
    [CrossRef] [PubMed]
  15. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
    [CrossRef]
  16. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [CrossRef]
  17. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
    [CrossRef]
  18. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]

2010 (1)

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (3)

2006 (2)

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

M. G. Banaee and J. F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484–1489 (2006).
[CrossRef]

2004 (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

2003 (2)

2002 (2)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
[CrossRef]

2001 (1)

1989 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alencar, M. A. R. C.

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

Arai, Y.

Banaee, M. G.

Bragas, A. V.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

Camerlingo, A.

Cantrell, C. D.

Cardinal, T.

Chandalia, J. K.

Chaudhari, C.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

Cormack, I. G.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Dasgupta, S.

Delfyett, P.

Eggleton, B. J.

Feng, X.

Flanagan, J. C.

Frampton, K. E.

Gorbach, A. V.

Gordon, J. P.

Grosz, D. F.

Guo, Y.

Haus, H. A.

Hickmann, J. M.

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

Hollenbeck, D.

Horak, P.

Jankovic, L.

Jose, R.

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

Kassab, L. R. P.

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

Kim, H.

Knight, J. C.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Knox, W. H.

Kobayashi, R.

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

König, P. G.

Kosinski, S. G.

Liao, M.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

Liao, M. S.

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

Liu, X.

Loh, W. H.

Martinez, O. E.

Masip, M. E.

Masuda, H.

Mori, A.

Ohishi, Y.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
[CrossRef] [PubMed]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24, 1517–1526 (2007).
[CrossRef]

Petropoulos, P.

Price, J. H. V.

Qin, G.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

Qin, G. S.

M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
[CrossRef] [PubMed]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

Reid, D. T.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Richardon, K.

Richardson, D. J.

Rieznik, A. A.

Rivero, C.

Russell, P. St. J.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

Rutt, H. N.

Schulte, A.

Serebryannikov, E. E.

Shikano, K.

Shimizu, M.

Skryabin, D. V.

Souza, R. F.

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

Stegeman, G.

Stegeman, R.

Stolen, R. H.

Suzuki, T.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
[CrossRef] [PubMed]

Tomlinson, W. J.

Wadsworth, W. J.

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

White, N. M.

Windeler, R. S.

Wise, F. W.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

Xu, C.

Yan, X.

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
[CrossRef] [PubMed]

Young, J. F.

Zheltikov, A. M.

Appl. Phys. Lett. (1)

R. F. Souza, M. A. R. C. Alencar, J. M. Hickmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89, 171917 (2006).
[CrossRef]

Electron. Lett. (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004).
[CrossRef]

J. Appl. Phys. (2)

X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
[CrossRef]

G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift effects in photonic crystal fiber,” J. Mod. Opt. 49, 757–767 (2002).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Express (3)

Opt. Lett. (3)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raman gain coefficient spectra of TBSN16P6W, TBSN10W, TP10, TW15, TBZN, and TZNMo10 tellurite fibers.

Fig. 2
Fig. 2

Time-domain Raman response function of tellurite fibers.

Fig. 3
Fig. 3

Reproduced spectra for the Raman gain coefficient spectrum using the intermediate-broadening model (dashed curve) and the Gaussian model (dotted curve).

Fig. 4
Fig. 4

Simulated (a) temporal and (b) spectral evolution of ultrashort laser pulses in silica, TBSN16P6W, TBSN10W, TP10, TW15, TBZN, and TZNMo10 glass fibers.

Fig. 5
Fig. 5

The relationship between T R and the amount of soliton frequency shift, where (a) pulse width T 0 = 150 fs , soliton order N = 2 , 3, and 4 and (b) soliton order N = 3 , pulse width T 0 = 100 , 150, and 200 fs .

Tables (1)

Tables Icon

Table 1 Values of the Parameters Used in the Intermediate-Broadening Model for TBZN, TZNMMo10, TW15, TP10, TBSN10W, and TBSN16P6W Tellurite Fibers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k 2 i k + 1 k ! β k k A t k = i γ ( 1 + i ω 0 t ) ( A ( z , t ) R ( t ) | A ( z , t t ) | 2 d t ) ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = i = 1 N A i exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) sin ( ω v , i t ) ,
g R ( ω ) i = 1 N A i 2 0 { cos [ ( ω v , i ω ) t ] cos [ ( ω v , i + ω ) t ] } exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) d t .
g R ( ω ) = 2 ω 0 c n 2 f R Im [ h ˜ R ( ω ) ] ,
T R = f R 0 t h R ( t ) d t .

Metrics