Abstract

We study UV-laser-induced melting and ablation of 10nm thick LiF films by UV laser irradiation. Our method combines a molecular dynamics scheme for LiF and a set of equations describing the temporal evolution of the conduction-electron density and temperature due to laser irradiation. We find that with increasing laser fluence, the crystal is heated, then melts, then temporary voids form, until it finally ablates, and even multifragmentation occurs. This sequence of events parallels that found in other materials, such as in metals, with similar values for the relative energization thresholds, if normalized to the cohesive energy of the material or to the melting temperature. The ablation mechanism is shown to be mechanical spallation of the molten crystal due to the high tensile pressure building up after the oscillatory relaxation of the initial high thermoelastic pressure.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
    [CrossRef]
  2. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
    [CrossRef]
  3. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004).
    [CrossRef]
  4. C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005).
    [CrossRef]
  5. A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
    [CrossRef]
  6. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
    [CrossRef]
  7. A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005).
    [CrossRef]
  8. A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007).
    [CrossRef]
  9. A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007).
    [CrossRef]
  10. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
    [CrossRef]
  11. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
    [CrossRef]
  12. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
    [CrossRef] [PubMed]
  13. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
    [CrossRef]
  14. N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
    [CrossRef]
  15. M. Nishikino, N. Hasegawa, T. Kawachi, H. Yamatani, K. Sukegawa, and K. Nagashima, “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration,” Appl. Opt. 47, 1129–1134 (2008).
    [CrossRef] [PubMed]
  16. A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
    [CrossRef] [PubMed]
  17. A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
    [CrossRef]
  18. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981).
    [CrossRef]
  19. D. A. Young, “Molecular dynamics simulation of swift ion damage in LiF,” Nucl. Instrum. Meth. B 225, 231–240 (2004).
    [CrossRef]
  20. V. E. Fortov, “Equations of state of condensed media,” J. Appl. Mech. Tech. Phys. 13, 894–902 (1972) [translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 6, 156–166 (1972)].
    [CrossRef]
  21. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.
  22. http://teos.ficp.ac.ru/rusbank/.
  23. H. B. Huntington, “The elastic constants of crystals,” Sol. State Phys. 7, 213–351 (1958).
    [CrossRef]
  24. I. Jackson, “Phase relations in the system LiF-MgF2 at elevated pressures: implications for the proposed mixed-oxide zone of the Earth’s mantle,” Phys. Earth Planet. Inter. 14, 86–94 (1977).
    [CrossRef]
  25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, 1954).
  26. V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
    [CrossRef]
  27. L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000).
    [CrossRef]
  28. V. P. Skripov and M. Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH, 2006).
    [CrossRef]
  29. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).
  30. H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010).
    [CrossRef]
  31. V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011).
    [CrossRef]
  32. P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990).
    [CrossRef]
  33. P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994).
    [CrossRef]
  34. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
    [CrossRef]
  35. T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002).
    [CrossRef]
  36. E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
    [CrossRef] [PubMed]
  37. E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
    [CrossRef]
  38. V. V. Stegailov, “Stability of LiF crystal in the warm dense matter state,” Contrib. Plasma Phys. 50, 31–34 (2010).
    [CrossRef]
  39. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
    [CrossRef] [PubMed]
  40. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
    [CrossRef]
  41. N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
    [CrossRef]
  42. H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
    [CrossRef]
  43. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
    [CrossRef]
  44. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
    [CrossRef]
  45. D. A. Young, “Evolution of a model ion explosion spike in potassium chloride by molecular dynamics,” Europhys. Lett. 59, 540–545 (2002).
    [CrossRef]

2011 (1)

V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011).
[CrossRef]

2010 (4)

H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010).
[CrossRef]

V. V. Stegailov, “Stability of LiF crystal in the warm dense matter state,” Contrib. Plasma Phys. 50, 31–34 (2010).
[CrossRef]

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[CrossRef]

2009 (4)

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

2008 (3)

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
[CrossRef] [PubMed]

M. Nishikino, N. Hasegawa, T. Kawachi, H. Yamatani, K. Sukegawa, and K. Nagashima, “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration,” Appl. Opt. 47, 1129–1134 (2008).
[CrossRef] [PubMed]

2007 (2)

A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007).
[CrossRef]

2006 (2)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
[CrossRef]

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
[CrossRef]

2005 (4)

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005).
[CrossRef]

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005).
[CrossRef]

2004 (4)

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004).
[CrossRef]

D. A. Young, “Molecular dynamics simulation of swift ion damage in LiF,” Nucl. Instrum. Meth. B 225, 231–240 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

2003 (2)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef] [PubMed]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

2002 (5)

C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
[CrossRef]

T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002).
[CrossRef]

D. A. Young, “Evolution of a model ion explosion spike in potassium chloride by molecular dynamics,” Europhys. Lett. 59, 540–545 (2002).
[CrossRef]

2000 (2)

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000).
[CrossRef]

1994 (1)

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994).
[CrossRef]

1990 (1)

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990).
[CrossRef]

1987 (1)

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

1977 (1)

I. Jackson, “Phase relations in the system LiF-MgF2 at elevated pressures: implications for the proposed mixed-oxide zone of the Earth’s mantle,” Phys. Earth Planet. Inter. 14, 86–94 (1977).
[CrossRef]

1972 (1)

V. E. Fortov, “Equations of state of condensed media,” J. Appl. Mech. Tech. Phys. 13, 894–902 (1972) [translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 6, 156–166 (1972)].
[CrossRef]

1958 (1)

H. B. Huntington, “The elastic constants of crystals,” Sol. State Phys. 7, 213–351 (1958).
[CrossRef]

Allen, R. E.

T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002).
[CrossRef]

Anisimov, S. I.

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

Ashkenasi, D.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Bennemann, K. H.

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
[CrossRef]

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994).
[CrossRef]

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990).
[CrossRef]

Betz, G.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
[CrossRef]

Born, M.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, 1954).

Bulanov, S. V.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Bushman, A. V.

A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.

Campbell, E. E.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

Cheng, C.

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005).
[CrossRef]

Dachraoui, H.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
[CrossRef]

Demaske, B. J.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Dumitrica, T.

T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002).
[CrossRef]

Faenov, A. Y.

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Fahy, S.

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

Faizullin, M. Z.

V. P. Skripov and M. Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH, 2006).
[CrossRef]

Fortov, V. E.

V. E. Fortov, “Equations of state of condensed media,” J. Appl. Mech. Tech. Phys. 13, 894–902 (1972) [translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 6, 156–166 (1972)].
[CrossRef]

A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.

Fritz, D. M.

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

Fukuda, Y.

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Garcia, M. E.

E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
[CrossRef]

Garrison, B. J.

L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000).
[CrossRef]

Hasegawa, N.

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Huang, K.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, 1954).

Huntington, H. B.

H. B. Huntington, “The elastic constants of crystals,” Sol. State Phys. 7, 213–351 (1958).
[CrossRef]

Husinsky, W.

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
[CrossRef]

Inogamov, N. A.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

Ishino, M.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

Jackson, I.

I. Jackson, “Phase relations in the system LiF-MgF2 at elevated pressures: implications for the proposed mixed-oxide zone of the Earth’s mantle,” Phys. Earth Planet. Inter. 14, 86–94 (1977).
[CrossRef]

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
[CrossRef]

Kanel’, G. I.

A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.

Kato, Y.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

Kawachi, T.

Khokhlov, V. A.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Kishimoto, M.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).

Lankin, A. V.

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef] [PubMed]

Lin, Z.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef] [PubMed]

Marine, W.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef] [PubMed]

Minchenko, V. I.

V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011).
[CrossRef]

Morozov, I. V.

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Murray, E. D.

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

Nagashima, K.

Nakamura, T.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Ni, A. L.

A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.

Nishihara, K.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

Nishikino, M.

Norman, G. E.

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Oleynik, I. I.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Petrov, Y. V.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Pikuz, S. A.

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Pikuz, T. A.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

Reis, D. A.

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

Rethfeld, B.

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

Rosandi, Y.

H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010).
[CrossRef]

Rosenfeld, A.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Schäfer, C.

C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
[CrossRef]

Skobelev, I. Y.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Skripov, V. P.

V. P. Skripov and M. Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH, 2006).
[CrossRef]

Sobelman, I. I.

I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981).
[CrossRef]

Stampfli, P.

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994).
[CrossRef]

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990).
[CrossRef]

Stegailov, V. V.

V. V. Stegailov, “Stability of LiF crystal in the warm dense matter state,” Contrib. Plasma Phys. 50, 31–34 (2010).
[CrossRef]

Stepanov, V. P.

V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011).
[CrossRef]

Stoian, R.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Sukegawa, K.

Tanaka, M.

A. Y. Faenov, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal,” Opt. Lett. 34, 941–943 (2009).
[CrossRef] [PubMed]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Upadhyay, A. K.

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005).
[CrossRef]

Urbassek, H. M.

H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010).
[CrossRef]

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005).
[CrossRef]

C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
[CrossRef]

Vainshtein, L. A.

I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981).
[CrossRef]

van Driel, H. M.

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

Wahlstrand, J. K.

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

Walkenhorst, J.

E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
[CrossRef] [PubMed]

Xu, X.

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005).
[CrossRef]

Yamatani, H.

Young, D. A.

D. A. Young, “Molecular dynamics simulation of swift ion damage in LiF,” Nucl. Instrum. Meth. B 225, 231–240 (2004).
[CrossRef]

D. A. Young, “Evolution of a model ion explosion spike in potassium chloride by molecular dynamics,” Europhys. Lett. 59, 540–545 (2002).
[CrossRef]

Yukov, E. A.

I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981).
[CrossRef]

Zhakhovskii, V. V.

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

Zhakhovsky, V. V.

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

Zhigilei, L. V.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
[CrossRef]

L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000).
[CrossRef]

Zijlstra, E. S.

E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (4)

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum model for simulation of laser interaction with metals: application to calculation of melting thresholds in Ni targets of varying thickness,” Appl. Phys. A 79, 977–981 (2004).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. Campbell, and I. V. Hertel, “Model description of surface charging during ultra-fast pulsed laser ablation of materials,” Appl. Phys. A 79, 1153–1155 (2004).
[CrossRef]

H. Dachraoui, W. Husinsky, and G. Betz, “Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion,” Appl. Phys. A 83, 333–336 (2006).
[CrossRef]

Contrib. Plasma Phys. (2)

V. V. Stegailov, “Stability of LiF crystal in the warm dense matter state,” Contrib. Plasma Phys. 50, 31–34 (2010).
[CrossRef]

N. A. Inogamov, A. Y. Faenov, V. A. Khokhlov, V. V. Zhakhovskii, Y. V. Petrov, I. Y. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. A. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, T. Nakamura, Y. Fukuda, S. V. Bulanov, and T. Kawachi, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455–466(2009).
[CrossRef]

Europhys. Lett. (1)

D. A. Young, “Evolution of a model ion explosion spike in potassium chloride by molecular dynamics,” Europhys. Lett. 59, 540–545 (2002).
[CrossRef]

J. Appl. Mech. Tech. Phys. (1)

V. E. Fortov, “Equations of state of condensed media,” J. Appl. Mech. Tech. Phys. 13, 894–902 (1972) [translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 6, 156–166 (1972)].
[CrossRef]

J. Appl. Phys. (2)

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, “Time-dependent energy absorption changes during ultrafast lattice deformation,” J. Appl. Phys. 91, 18–23 (2002).
[CrossRef]

L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement regimes,” J. Appl. Phys. 88, 1281–1298 (2000).
[CrossRef]

J. Chem. Thermo. (1)

V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Thermo. 43, 467–470(2011).
[CrossRef]

J. Phys. Chem. C (1)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892–11906 (2009).
[CrossRef]

J. Phys. Conf. Ser. (1)

A. K. Upadhyay and H. M. Urbassek, “Response of ultrathin metal films to ultrafast laser irradiation: a comparative molecular-dynamics study,” J. Phys. Conf. Ser. 59, 68–74 (2007).
[CrossRef]

J. Phys. D (2)

A. K. Upadhyay and H. M. Urbassek, “Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study,” J. Phys. D 38, 2933–2941 (2005).
[CrossRef]

A. K. Upadhyay and H. M. Urbassek, “Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study,” J. Phys. D 40, 3518–3526 (2007).
[CrossRef]

JETP Lett. (1)

V. V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N. A. Inogamov, “Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transition,” JETP Lett. 71, 167–172 (2000).
[CrossRef]

Nucl. Instrum. Meth. B (1)

D. A. Young, “Molecular dynamics simulation of swift ion damage in LiF,” Nucl. Instrum. Meth. B 225, 231–240 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Earth Planet. Inter. (1)

I. Jackson, “Phase relations in the system LiF-MgF2 at elevated pressures: implications for the proposed mixed-oxide zone of the Earth’s mantle,” Phys. Earth Planet. Inter. 14, 86–94 (1977).
[CrossRef]

Phys. Rev. B (12)

P. Stampfli and K. H. Bennemann, “Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma,” Phys. Rev. B 42, 7163–7173 (1990).
[CrossRef]

P. Stampfli and K. H. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: role of longitudinal optical distortions,” Phys. Rev. B 49, 7299–7305 (1994).
[CrossRef]

T. Dumitrică and R. E. Allen, “Femtosecond-scale response of GaAs to ultrafast laser pulses,” Phys. Rev. B 66, 081202(2002).
[CrossRef]

E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A. Reis, “Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth,” Phys. Rev. B 72, 060301 (2005).
[CrossRef]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108(2006).
[CrossRef]

B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
[CrossRef]

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[CrossRef]

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415(2005).
[CrossRef]

A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, “Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold,” Phys. Rev. B 78, 045437 (2008).
[CrossRef]

C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, “Metal ablation by picosecond laser pulses: a hybrid simulation,” Phys. Rev. B 66, 115404 (2002).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films,” Phys. Rev. B 68, 064114 (2003).
[CrossRef]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B 69, 054102 (2004).
[CrossRef]

Phys. Rev. E (1)

A. V. Lankin, I. V. Morozov, G. E. Norman, S. A. Pikuz, and I. Y. Skobelev, “Solid-density plasma nanochannel generated by a fast single ion in condensed matter,” Phys. Rev. E 79, 036407 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[CrossRef] [PubMed]

E. S. Zijlstra, J. Walkenhorst, and M. E. Garcia, “Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb,” Phys. Rev. Lett. 101, 135701 (2008).
[CrossRef] [PubMed]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. M. Urbassek and Y. Rosandi, “Insight from molecular dynamics simulation into ultrashort-pulse laser ablation,” Proc. SPIE 7842, 784214 (2010).
[CrossRef]

Quantum Electron. (1)

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966–985 (2010).
[CrossRef]

Sol. State Phys. (1)

H. B. Huntington, “The elastic constants of crystals,” Sol. State Phys. 7, 213–351 (1958).
[CrossRef]

Other (6)

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, 1954).

V. P. Skripov and M. Z. Faizullin, Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity (Wiley-VCH, 2006).
[CrossRef]

C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).

I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer, 1981).
[CrossRef]

A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993) 1st ed. published in 1988 by the Institute of Chemical Physics, USSR Academy of Sciences.

http://teos.ficp.ac.ru/rusbank/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cold curve p ( n ) for T = 0 evaluated for the potential used in this work (red—1) and from experiment (blue—2) [20, 21, 22].

Fig. 2
Fig. 2

Energy balance in the crystal for F = 30 mJ / cm 2 , corresponding to E 0 = 0.51 eV / atom , Eq. (9). Data are given as energies per atom.

Fig. 3
Fig. 3

Temporal evolution of the (a) concentration and (b) energy of electrons in the conduction band. Data are given as energies per atom. For comparison, the laser source profile, Eq. (4), with a pulse duration of 7 ps , is added in arbitrary units.

Fig. 4
Fig. 4

Electron and ion temperature in the crystal for F = 30 mJ / cm 2 . Pulse duration is 7 ps .

Fig. 5
Fig. 5

Snapshots of the thin film at the end of the simulation time, 70 ps , for various fluences: (a) 10, (b) 20, (c) 30, (d) 40, (e) 50, and (f)  80 mJ / cm 2 . Note that the length scale was changed for the two highest energizations; in these cases, the snapshots have been taken at (e) 45 and (f)  15 ps .

Fig. 6
Fig. 6

Snapshots of the thin film irradiated with 40 mJ / cm 2 at times (a) 5, (b) 7.5, (c) 10, (d) 15, and (e)  20 ps . The snapshot at time t = 70 ps is shown in Fig. 5d.

Fig. 7
Fig. 7

Energization thresholds for LiF, and compared to two metals and a Lennard–Jones system, [5, 9]. The thresholds are given in scaled units: scaled to (a) the cohesive energy, E coh , and to (b)  k T m , where T m is the melting temperature.

Fig. 8
Fig. 8

(a) Temperature and (b) pressure averaged through the thin film for various irradiation fluences.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d n e d t = Q abs ( t ) E gap + ν imp n e κ rec n e 3 ,
v e σ imp X = A X β / ( β + 1 ) β + α X e β ; β = E gap k T e ,
κ rec X = g z 2 g z + 1 ( 2 π 2 m k T e ) 3 / 2 e β v e σ imp X ,
Q abs ( t ) = F abs π d τ exp ( t 2 / τ 2 ) ,
d E e d t = Q abs ( t ) ( d E e d t ) e a .
( d E e d t ) e a = A E e .
3 2 k T e = E e E gap .
V i j ( r ) = q i q j 4 π ϵ 0 r + A i j exp ( r / λ i j ) C i j r 6 ,
2 n 0 E 0 = F abs d ,
ϵ coh = E 0 E coh .
ϵ m = E 0 k T m .
p = Γ E V = Γ E 0 n 0 ,
1 2 ϵ ϵ 0 E th 2 = n 0 E coh ,

Metrics