Abstract

This work numerically investigates optical responses (absorptance, reflectance, and transmittance) of lossy metallic slit arrays at the excitation of a magnetic polariton (MP). The studied wavenumber is between 1.2×103 and 2.5×104cm1 for the spectral regions in which aluminum and tungsten are lossy, which do not coincide. The loss of silver is negligible. Optical response spectra clearly specify the resonance modes, excitation frequency, and impacts from loss, as well as other mechanisms. The inductance and capacitance circuit model predicting MP frequency is not always valid, and the best fitting constant varies with material, slit geometry, angle of incidence, and wavelength. Electromagnetic fields in the near field further illustrate the interplay between the incidence and slit arrays.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. García-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  3. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
    [CrossRef] [PubMed]
  4. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
    [CrossRef]
  5. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
    [CrossRef] [PubMed]
  6. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008).
    [CrossRef]
  7. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
    [CrossRef] [PubMed]
  8. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
    [CrossRef]
  9. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15, 16651–16656 (2007).
    [CrossRef] [PubMed]
  10. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
    [CrossRef]
  11. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef] [PubMed]
  12. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
    [CrossRef]
  13. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
    [CrossRef]
  14. S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
    [CrossRef]
  15. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003).
    [CrossRef]
  16. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  20. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  21. S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995).
    [CrossRef]
  22. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005).
    [CrossRef]
  23. Y.-B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130–3140(2009).
    [CrossRef] [PubMed]
  24. R. M. Eisberg, Fundamentals of Modern Physics (Wiley, 1961).

2009 (5)

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Y.-B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130–3140(2009).
[CrossRef] [PubMed]

2008 (3)

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008).
[CrossRef]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15, 16651–16656 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005).
[CrossRef]

2003 (1)

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003).
[CrossRef]

1999 (2)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

F. J. García-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

1995 (2)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995).
[CrossRef]

1983 (1)

Alexander, R. W.

Baida, F. I.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bustarret, E.

Chao, X. B.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Chen, Y.-B.

Y.-B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130–3140(2009).
[CrossRef] [PubMed]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008).
[CrossRef]

Dechelette, A.

Dong, Z. G.

Economon, E. N.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Eisberg, R. M.

R. M. Eisberg, Fundamentals of Modern Physics (Wiley, 1961).

Fournier, T.

Fu, C.

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

F. J. García-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

Gaylord, T. K.

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Grann, E. B.

He, M. D.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Huang, C. P.

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Kim, J. B.

Koschny, T.

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Lam, V. D.

Lee, B. J.

Lee, S. J.

Lee, Y. P.

Li, J. Q.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Li, T.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Liu, H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Liu, J. Q.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Long, L. L.

Lopez-Rios, T.

Moharam, M. G.

Ordal, M. A.

Ouyang, R. B.

S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Pannetier, B.

Park, K.

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Pommet, D. A.

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Sanchez-Dehesa, J.

Soukoulis, C. M.

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003).
[CrossRef]

Wan, Q.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Wang, F. M.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Wang, G. D.

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Wang, L. L.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

Wang, Q. J.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Wang, S. M.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Wang, Y.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Ward, C. A.

Wei, J. N.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Wu, S.

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Xiong, S. J.

S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995).
[CrossRef]

Zhang, X.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008).
[CrossRef]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005).
[CrossRef]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zhao, J. W.

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhou, J. F.

Zhou, L.

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

Zhu, S. N.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Zhu, Y. Y.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Zhu, Z. H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L. Wang, Q. Wan, and Y. Wang, “Multiple enhanced transmission bands through compound periodic array of rectangular holes,” J. Appl. Phys. 106, 093108 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. (1)

S. J. Xiong and R. B. Ouyang, “Magnetoplasmon polaritons and resonant optical transmission of a finite random-thickness superlattice in a magnetic field,” J. Phys. 7, 3431–3444 (1995).
[CrossRef]

J. Phys. D (1)

S. Wu, G. D. Wang, Q. J. Wang, L. Zhou, J. W. Zhao, C. P. Huang, and Y. Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure,” J. Phys. D 42, 225406 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transfer 109, 608–619 (2008).
[CrossRef]

Nature (1)

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67, 155423 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006).
[CrossRef]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

R. M. Eisberg, Fundamentals of Modern Physics (Wiley, 1961).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Refractive index (n) and (b) extinction index (κ) and index ratio ( κ / n ) of aluminum, silver, and tungsten. Inset of Fig. 1a shows the absorptance from three metallic bulk substrates at normal incidence. The table in Fig. 1b lists plasma frequencies of the three metals.

Fig. 2
Fig. 2

Schematic view of a slit array, whose geometry is defined by the slit width b or lamella width w, thickness h, and period Λ. The incidence is always along the x z plane, and the incidence orientation is defined by the polar angle θ. The hatched rectangle specifies the control boundary of a slit unit and is approximated as a closed circuit composed of inductances and capacitances.

Fig. 3
Fig. 3

Contour plot of 1 R for slit arrays: (a) silver, (b) aluminum, and (c) tungsten.

Fig. 4
Fig. 4

ω MP , 1 for (a) silver, (b) aluminum, and (c) tungsten slit arrays of various thicknesses at normal and oblique incidence.

Fig. 5
Fig. 5

Spectral optical responses at normal incidence for 1 μm thick (a) silver, (b) aluminum, and (c) tungsten slit arrays.

Fig. 6
Fig. 6

Near-field patterns of the following items for silver slit arrays at the excitation of MP1: (a) EM fields and (b) Poynting vectors and energy density around slit inlets and outlets. Near-field patterns of the following items for aluminum arrays at the excitation of MP1: (c) EM fields and (d) Poynting vectors and energy density around slit inlets and outlets.

Fig. 7
Fig. 7

(a) EM field patterns and (b) Poynting vectors and the normalized energy density of an aluminum slit array at the excitation of MP3.

Fig. 8
Fig. 8

(a) EM field patterns and (b) Poynting vectors and the normalized energy density of a silver slit array at the excitation of MP6. One standing wave depicted with a double frame is magnified.

Tables (1)

Tables Icon

Table 1 Normalized Frequencies of Different Resonant Modes as Indicated by Green Arrows in Fig. 5 for Aluminum, Silver, and Tungsten Slit Arrays

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ω = 4 n ( n + 1 ) 2 + κ 2 4 ( κ / n ) 1 κ ( κ / n ) 2 + κ .
ω MP , 1 = [ ( L m + L e ) C m ] 1 / 2 .
S = 1 2 Re ( E × H * ) ,
u = 1 4 ε FS E · E * + 1 4 μ FS H · H * .

Metrics