Abstract

We report on the design, fabrication, and optical characterization of a one-dimensional (1D) metallo–dielectric metamaterial tuned to enhance evanescent wave transmission with kx4k0. Taking reflection and transmission measurements from a 1D subwavelength diffraction grating placed on the metamaterial, we show broadband- propagating wave to surface plasmon coupling in the visible. However, the fabricated device falls short of the design expectations based on coupled-wave numerical simulations. The dips in the reflection spectrum associated with surface plasmon coupling are 40% smaller than predicted, and the transmission exhibits strong depolarization. Overall, the numerical results support that intrinsic metallic losses do not preclude the development of these devices in the visible, but there are considerable plasmon scattering losses from the metamaterial’s imperfections. This extrinsic limiting factor needs to be overcome to develop metallo–dielectric metamaterials for practical components for use in superlenses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  3. W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
    [CrossRef]
  4. Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
    [CrossRef] [PubMed]
  5. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
    [CrossRef] [PubMed]
  7. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
    [CrossRef] [PubMed]
  8. B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  9. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  10. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16, 4217–4227(2008).
    [CrossRef] [PubMed]
  11. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [CrossRef] [PubMed]
  12. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
    [CrossRef]
  13. S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  14. T. Davis, “Surface plasmon modes in multilayer thin films,” Opt. Commun. 282, 135–140 (2009).
    [CrossRef]
  15. Z. Yang and Y. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near infrared regions,” Opt. Express 15, 9510–9519 (2007).
    [CrossRef] [PubMed]

2009 (1)

T. Davis, “Surface plasmon modes in multilayer thin films,” Opt. Commun. 282, 135–140 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (2)

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[CrossRef] [PubMed]

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[CrossRef]

2003 (2)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

2002 (1)

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

2000 (1)

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Blaikie, R. J.

Cai, W.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Davis, T.

T. Davis, “Surface plasmon modes in multilayer thin films,” Opt. Commun. 282, 135–140 (2009).
[CrossRef]

Du, C.

Durant, S.

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Gan, D.

Genov, D.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Gippius, N.

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Ishihara, T.

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Lee, H.

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Lu, Y.

Luo, X.

Melville, D. O. S.

Muljarov, E.

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pendry, J.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Ramakrishna, S.

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Shalaev, V.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Stewart, W.

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Tikhodeev, S.

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Tsai, D.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Wang, C.

Wiltshire, M.

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Wood, B.

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Xiang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
[CrossRef] [PubMed]

Yablonskii, A.

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yang, Z.

Yen, T. J.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Zhang, X.

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15, 7095–7102 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett. (1)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent waves by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

J. Mod. Opt. (1)

S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Xiang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Davis, “Surface plasmon modes in multilayer thin films,” Opt. Commun. 282, 135–140 (2009).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (4)

B. Wood, J. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal–dielectric composites,” Phys. Rev. B 72, 193101 (2005).
[CrossRef]

S. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TM transmission coefficients of the metamaterial in medium n = 4 for k x at wavelengths λ = 450 , 500, 600, 700 nm . Inset: dispersion relation for a 10 pair Al 2 O 3 and Ag metamaterial with layer thicknesses 29.5 and 27 nm , respectively. Solid red line, free space light line; dashed line, k x -vector created by the 196.4 nm periodicity diffraction grating; blue triangles, dispersion curves.

Fig. 2
Fig. 2

Reflection and transmission simulations of white light at normal incidence on a multilayer with graphical inset. (a) Light incident on the metamaterial from n = 4 and transmitted into n = 4 . (b) White light incident on a diffraction grating in a vacuum on a metamaterial transmitted into n = 4 . (c) White light incident on a diffraction grating on a metamaterial diffracted through a grating in vacuum (superlens configuration). (d) White light incident on a diffraction grating in a vacuum on a metamaterial transmitted into a vacuum.

Fig. 3
Fig. 3

Scanning electron micrograph of the cross section of the metamaterial on glass with a 50 nm Ag layer before the grating milling. Inset: top view zoom of the 196.4 nm periodicity grating in Ag. The top to bottom thickness increase is due to a slight instrument drift during imaging.

Fig. 4
Fig. 4

Experimental data for normalized reflection from a 196.4 nm periodicity grating on a 10 pair A 2 O 3 and Ag metamaterial with layer thicknesses of 29.5 and 27 nm , respectively, with the simulated reflection for the case of a 50 nm high Ag grating. All values are normalized by the reflection from the metamaterial. Right: diagram of confocal setup from a 50 μm fiber and 10 × microscope objective.

Fig. 5
Fig. 5

Left: transmission enhancement of polarized and unpolarized light through the grating and metamaterial. Above are the polarized transmissions normalized by the total transmissions for TM and TE incident waves. Right: diagram of confocal setup from a 50 μm fiber and 10 × microscope objective.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x = 2 π m d ,

Metrics