Abstract

The codoping of CaF2:Pr3+ with Yb3+ ions is shown to lead to the formation of Pr3+/Yb3+ clusters, which can be attractive quantum cutting systems to enhance solar cells’ efficiency. Very high Pr3+ to Yb3+ energy transfer efficiencies (ETEs) are achieved for low Yb3+ and Pr3+ concentrations (ETE=97% in CaF2:0.5%Pr3+-1%Yb3+) confirming the short distance between Pr3+ and Yb3+ ions within clusters. A low Yb3+ concentration offers the advantage of drastically limiting the Yb3+ concentration quenching usually observed in other hosts where the Yb3+ concentration has to be larger to achieve a high ETE for solar cell applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
    [CrossRef]
  2. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–516 (1961).
    [CrossRef]
  3. T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
    [CrossRef]
  4. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
    [CrossRef]
  5. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhy, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33, 2858–2860 (2008).
    [CrossRef] [PubMed]
  6. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
    [CrossRef]
  7. C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
    [CrossRef]
  8. S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
    [CrossRef]
  9. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
    [CrossRef]
  10. V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
    [CrossRef]
  11. R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
    [CrossRef]
  12. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
    [CrossRef]
  13. D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
    [CrossRef]
  14. F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
    [CrossRef]
  15. E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
    [CrossRef]

2011 (1)

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

2010 (2)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

2009 (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[CrossRef]

2008 (2)

2006 (1)

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

2004 (1)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

2003 (2)

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

2002 (1)

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

1999 (1)

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

1991 (1)

1979 (1)

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–516 (1961).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[CrossRef]

Andeen, C.

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

Balda, R.

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

Benayad, A.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Boulon, G.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

Braud, A.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Caird, J. A.

Camy, P.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Chase, L. L.

Chen, D.

de Pablos, A.

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Dong, G.

Doualan, J. L.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Doualan, J.-L.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

Fdez-Navarro, J. M.

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Fernandez, J.

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

Fontanella, J.

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

Fukuda, T.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Goutaudier, C.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

Guyot, Y.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Heumann, E.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

Huber, G.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Ito, M.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Krupke, W. F.

Kuck, S.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Lakshminarayana, G.

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

Lebbou, K.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Liu, X.

Matthiews, G. E.

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

Meijerink, A.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[CrossRef]

Ménard, V.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Moncorgé, R.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Nielsen, N. D.

Osiac, E.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Payne, S. A.

Petit, V.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

Portier, X.

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Qiao, Y.

Qiu, J.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–516 (1961).
[CrossRef]

Reid, M. F.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

Sani, E.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Scheidelaar, S.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

Serrano, D.

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–516 (1961).
[CrossRef]

Smith, L. K.

Smith, M. K.

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

Toncelli, A.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Tonelli, M.

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Trupke, T.

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[CrossRef]

van Wijngaarden, J. T.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

Vlugt, T. J. H.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

Ye, S.

Zhy, B.

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 3073–3077 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “cw and tunable laser operation of Yb3+ in Nd:Yb:CaF2,” Appl. Phys. Lett. 88, 051111 (2006).
[CrossRef]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–516 (1961).
[CrossRef]

T. Trupke and M. A. Green, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668–1674 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (2)

R. Balda, J. Fernandez, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys. Condens. Matter 11, 7411–7421 (1999).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16, 1501–1521 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (3)

D. Serrano, A. Braud, J.-L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, “Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement,” Opt. Mater. 33, 1028–1031 (2011).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[CrossRef]

E. Osiac, S. Kuck, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli, “Spectroscopic characterization of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8,” Opt. Mater. 24, 537–545 (2003).
[CrossRef]

Phys. Rev. B (3)

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+,Yb3+) couple,” Phys. Rev. B 81, 155112(2010).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

C. Andeen, G. E. Matthiews, M. K. Smith, and J. Fontanella, “Electric-dipole relaxation of mixed clusters in double-doped CaF2,” Phys. Rev. B 19, 5293–5298 (1979).
[CrossRef]

Prog. Photovoltaics (1)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 36),” Prog. Photovoltaics 18, 346–352 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pr 3 + and Yb 3 + ion energy level schemes. Quantum cutting takes place by two consecutive energy transfers, (1) and (2). Solid, dotted, and curved arrows represent optical transitions, energy transfer processes, and nonradiative relaxations, respectively.

Fig. 2
Fig. 2

Room temperature Pr 3 + emission spectra under blue excitation at 440 nm ( P 3 2 ) in CaF 2 : 0.5 % Pr 3 + - x % Yb 3 + ( x = 0 , 0.5, 1, 2, 4).

Fig. 3
Fig. 3

P 3 0 decay curves recorded at 605 nm ( P 3 0 H 6 3 ) and 640 nm ( P 3 0 F 2 3 ) with λ exc = 440 nm and D 1 2 decay curve recorded at 828 nm ( D 1 2 H 6 3 ) with λ exc = 590 nm : a)  CaF 2 : 0.5 % Pr 3 + , and b)  CaF 2 : 0.5 % Pr 3 + - 4 % Yb 3 + .

Fig. 4
Fig. 4

Ytterbium emission ( F 5 / 2 F 7 / 2 2 2 ) under Pr 3 + excitation at 440 nm ( P 3 2 ) in CaF 2 : 0.5 % Pr 3 + - x % Yb 3 + ( x = 0 , 0.5, 1, 2, 4). (a) Relative Yb 3 + intensities of all samples recorded in the same conditions, (b) normalized emission spectra illustrating the effect of photon reabsorption.

Fig. 5
Fig. 5

P 2 0 decay curves recorded at 607 nm ( P 3 0 H 6 3 ) in CaF 2 : 0.5 % Pr 3 + - x % Yb 3 + ( x = 0 , 0.5, 1, 2, 4) under blue excitation at 440 nm ( P 3 2 ). For singly Pr 3 + -doped CaF 2 , one can notice a slight nonexponential feature at the beginning of the decay, which is likely due to Pr 3 + clusters in which cross-relaxation processes among Pr 3 + ions are very efficient, thus reducing drastically the P 3 0 lifetime.

Fig. 6
Fig. 6

Room temperature Pr 3 + emission spectra around 1.3 μm ( G 1 4 H 5 3 ) under Pr 3 + excitation at 457 nm ( P 3 1 ) and under Yb 3 + excitation in (a)  CaF 2 : 0.5 % Pr 3 + - 0.5 % Yb 3 + and (b)  CaF 2 : 0.5 % Pr 3 + - 4 % Yb 3 + . It is noteworthy that the Pr 3 + luminescence under Yb 3 + excitation illustrates the existence of a back-transfer from Yb 3 + ( F 5 / 2 F 7 / 2 2 2 ) to Pr 3 + ( H 3 4 G 4 1 ).

Fig. 7
Fig. 7

P 3 0 decay curve recorded at 607 nm ( P 3 0 H 6 3 ) with λ exc = 440 nm in CaF 2 : 0.5 % Pr 3 + - 2 % Yb 3 + . Solid line, biexponential fit of the decay. Insets: time-resolved spectra for (a) first 10 μs and (b) long part of the decay ( t > 10 μs ).

Tables (1)

Tables Icon

Table 1 P 0 3 Lifetime and ETE as a Function of Yb 3 + Concentration a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η x % Yb = τ x % Yb 1 τ 0 % Yb 1 τ x % Yb 1 = 1 τ x % Yb τ 0 % Yb ,

Metrics