Abstract

A theory of terahertz emission from a femtosecond laser pulse with a tilted intensity front propagating through a prism-shaped electro-optic crystal is developed. The theory accounts for transient effects at the entrance boundary of the crystal and allows us to explore the dynamics of terahertz generation in the crystal. In particular, transverse walkoff length is introduced as an important parameter of the terahertz field formation process. Two typical experimental situations—LiNbO3 excited with a Ti:sapphire laser (0.8μm wavelength) at room and cryogenic temperatures—are considered, and new schemes, in which GaAs at room temperature is excited at 1.8 and 3.5μm, are proposed and analyzed. The parameters of the laser pulse (transverse size, tilt angle, and pulse duration) and crystal size maximizing the terahertz yield are calculated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [PubMed]
  2. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
    [CrossRef]
  3. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
    [CrossRef]
  4. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
    [CrossRef] [PubMed]
  5. K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
    [CrossRef]
  6. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz-shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
    [CrossRef]
  7. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33, 2497–2499 (2008).
    [CrossRef] [PubMed]
  8. A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
    [CrossRef]
  9. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15, 11706–11713 (2007).
    [CrossRef] [PubMed]
  10. B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
    [CrossRef]
  11. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
    [CrossRef]
  12. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
    [CrossRef] [PubMed]
  13. A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
    [CrossRef]
  14. M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
    [CrossRef]
  15. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
    [CrossRef]
  16. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
    [CrossRef]
  17. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2, 11–25 (2008).
    [CrossRef]
  18. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823–831 (2001).
    [CrossRef]
  19. N. S. Stoyanov, T. Feurer, D. W. Ward, E. R. Statz, and K. A. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12, 2387–2396 (2004).
    [CrossRef] [PubMed]
  20. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
    [CrossRef]
  21. R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
    [CrossRef]
  22. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  23. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998), p. 325.
  24. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
    [CrossRef]
  25. M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
    [CrossRef]
  26. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263–2276 (2006).
    [CrossRef] [PubMed]
  27. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59, 229–232 (1986).
    [CrossRef]

2010 (2)

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[CrossRef] [PubMed]

2009 (1)

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

2008 (5)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2, 11–25 (2008).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[CrossRef]

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz-shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33, 2497–2499 (2008).
[CrossRef] [PubMed]

2007 (6)

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15, 11706–11713 (2007).
[CrossRef] [PubMed]

K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
[CrossRef]

2006 (1)

2005 (2)

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

2004 (3)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

N. S. Stoyanov, T. Feurer, D. W. Ward, E. R. Statz, and K. A. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12, 2387–2396 (2004).
[CrossRef] [PubMed]

2003 (1)

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[CrossRef]

2002 (1)

2001 (1)

1990 (1)

1986 (1)

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59, 229–232 (1986).
[CrossRef]

1969 (1)

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

Almási, G.

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[CrossRef] [PubMed]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[PubMed]

Bakunov, M. I.

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
[CrossRef]

Bartal, B.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Bessho, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Bodrov, S. B.

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
[CrossRef]

Bonacina, L.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33, 2497–2499 (2008).
[CrossRef] [PubMed]

Chekalin, S. V.

Chen, Q.

Chirkin, A. S.

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

Fattinger, C.

Feurer, T.

Fülöp, J. A.

Ghosh, G.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998), p. 325.

Grischkowsky, D.

Hangyo, M.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

Hebling, J.

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[CrossRef] [PubMed]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
[CrossRef]

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz-shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[CrossRef]

K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15, 11706–11713 (2007).
[CrossRef] [PubMed]

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[CrossRef]

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[PubMed]

Henin, S.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

Hirosumi, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Hoffman, M. C.

K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Hoffmann, M. C.

Jiang, Z.

Kasparian, J.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

Keiding, S.

Kozma, I. Z.

Kuhl, J.

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[CrossRef]

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[PubMed]

Martinez, O. E.

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59, 229–232 (1986).
[CrossRef]

Maslov, A. V.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

Nagai, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Nazarov, M. M.

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

Nelson, K. A.

Ohtake, H.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Pálfalvi, L.

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).
[CrossRef] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Petit, Y.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Riedle, E.

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

Shkurinov, A. P.

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

Shuvaev, A. V.

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

Statz, E. R.

Stepanov, A. G.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33, 2497–2499 (2008).
[CrossRef] [PubMed]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express 13, 5762–5768 (2005).
[CrossRef] [PubMed]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[CrossRef]

Stolen, R. H.

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

Stoyanov, N. S.

Sugiura, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Tanaka, K.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Tani, M.

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823–831 (2001).
[CrossRef]

Tsarev, M. V.

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[CrossRef]

van Exter, M.

Vodopyanov, K. L.

Ward, D. W.

Wolf, J.-P.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33, 2497–2499 (2008).
[CrossRef] [PubMed]

Yeh, K. L.

K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

Yeh, K.-L.

Yoshida, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Zhang, X.-C.

Appl. Phys. B (3)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101, 11–14 (2010).
[CrossRef]

B. Bartal, I. Z. Kozma, A. G. Stepanov, G. Almási, J. Kuhl, E. Riedle, and J. Hebling, “Toward generation of μJ range sub-ps THz pulses by optical rectification,” Appl. Phys. B 86, 419–423 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse front,” Appl. Phys. Lett. 83, 3000–3002 (2003).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

J. Appl. Phys. (3)

M. I. Bakunov, M. V. Tsarev, S. B. Bodrov, and M. Tani, “Strongly subluminal regime of optical-to-terahertz convertion in GaP,” J. Appl. Phys. 105, 083111 (2009).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105 (2008).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2, 11–25 (2008).
[CrossRef]

Opt. Commun. (2)

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz-shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[CrossRef]

O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59, 229–232 (1986).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99, 203904 (2007).
[CrossRef]

Radiophys. Quantum Electron. (1)

A. V. Shuvaev, M. M. Nazarov, A. P. Shkurinov, and A. S. Chirkin, “Cerenkov radiation excited by an ultrashort laser pulse with oblique amplitude front,” Radiophys. Quantum Electron. 50, 922–928 (2007).
[CrossRef]

Other (1)

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998), p. 325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the problem.

Fig. 2
Fig. 2

Snapshots of E z ( t , y , x ) at t = 0 for (a) non-phase-matched ( α = 61.4 ° ) and (b) phase-matched ( α = 62.4 ° ) excitation of a semi-infinite 10 K sLN with a planar Ti:sapphire laser pulse [ λ = 0.8 μm , τ FWHM = 200 fs and the peak intensity I 0 = c ( 8 π ) 1 n opt E 0 2 = 1 GW / cm 2 ].

Fig. 3
Fig. 3

(a),(c) Oscillograms E z ( t ) at y = 0 and different x (shown in mm near the corresponding curves) for (a) non-phase-matched ( α = 61.4 ° ) and (c) phase-matched ( α = 62.4 ° ) excitation of a semi-infinite 10 K sLN with a planar Ti:sapphire laser pulse ( τ FWHM = 200 fs ). (b),(d)  | E z | max as a function of x for different τ FWHM (shown in fs near the corresponding curves) in (b) non-phase-matched and (d) phase-matched regimes. Horizontal lines in (b) and (d) depict | E max | given by Eq. (20) (dashed-dotted lines) and the wave amplitude given by Eq. (21) (dashed lines). Vertical lines in (b) and (d) depict the walkoff and buildup lengths. The peak laser intensity is I 0 = 1 GW / cm 2 .

Fig. 4
Fig. 4

(a) Phase-matched frequency ω 0 as a function of α α cr for 10 K sLN pumped at 0.8 μm (solid curve), GaAs pumped at 3.5 μm (dashed curve), and GaAs pumped at 1.8 μm (dotted curve). (b) Spectrum | E ˜ z ( ω ) | at several x (shown in mm near the corresponding curves) in the crystal for the same parameters as in Fig. 3c.

Fig. 5
Fig. 5

(a)  | E z | max in the crystal as a function of α α cr for 10 K sLN, GaAs ( 3.5 ) , and GaAs ( 1.8 ) . The peak laser intensity is I 0 = 1 GW / cm 2 , and τ FWHM = 200 fs . (b)  L w (solid curves, α α cr < 0 ), L b (solid curves, α α cr > 0 ), and L e (dashed curves) as functions of α α cr for the same materials ( L w is at τ FWHM = 200 fs .).

Fig. 6
Fig. 6

Transverse walkoff of (a)  transient radiation and (b) phase-matched wave.

Fig. 7
Fig. 7

Snapshots of E z ( t , y , x ) in the crystal at successive moments t for (a)  10 K sLN, α = 60.9 ° , (b)  10 K sLN, α = 62.9 ° , and (c)  300 K sLN, α = 63.8 ° . The parameters of a Ti:sapphire laser are FWHM = 4 mm , τ FWHM = 200 fs , and I 0 = 1 GW / cm 2 .

Fig. 8
Fig. 8

Snapshots of E z ( t , y , x ) in GaAs ( 1.8 ) at successive moments t for (a)  FWHM = 4 mm and (b)  FWHM = 1 mm . The other parameters are α = 14 ° , τ FWHM = 200 fs , and I 0 = 1 GW / cm 2 .

Fig. 9
Fig. 9

Optical-to-terahertz conversion efficiency as a percentage as a function of α α cr and L for (a)  300 K sLN, (b)  10 K sLN, and (c)  GaAs ( 1.8 ) . The laser parameters are FWHM = 4 mm , τ FWHM = 200 fs , and I 0 = 1 GW / cm 2 .

Fig. 10
Fig. 10

Same as in Fig. 9 but with the dependence τ ( x ) included.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

P NL = p F ( t x / V y / V y ) G ( y ) ,
F ( η ) = exp ( η 2 / τ 2 ) , G ( y ) = exp ( y 2 / 2 ) ,
ε = ε + ( ε 0 ε ) ω TO 2 ω TO 2 ω 2 + i γ ω ,
E z y = 1 c B x t , E z x = 1 c B y t ,
B y x B x y = 1 c D z t + 4 π c P z NL t .
2 E ˜ z x 2 + κ 2 ( x ) E ˜ z = 4 π ω 2 p c 2 F ˜ ( ω ) G ˜ ( g ω V y ) Θ ( x ) e i ω x / V ,
E ˜ z ( ω , g , x ) = A { κ c ω / V κ v + κ c e i κ v x , x < 0 , e i ω x / V κ v + ω / V κ v + κ c e i κ c x , x > 0 ,
E z ( t , y , x ) = d ω d g E ˜ z ( ω , g , x ) e i ω t i g y .
T F = 2 κ c ( κ v + κ c ) 1
T N = [ ω n g ( c cos α ) 1 + κ c + g tan α ] ( κ v + κ c ) 1
E z ( t ) ( t , y , x ) = d ω d g E ˜ z ( t ) e i ω t i g y i κ v x ,
E ˜ z ( t ) ( ω , g ) = e i g L / sin α 2 π i d g A ( ω , g ) e i g L cot α × [ T N g g cos α + ( ω / V ) sin α i δ κ v + ω / V κ v + κ c T F g g cos α + κ c sin α ]
W = 0 d ω w ω ( ω ) ,
w ω ( ω ) = 2 π c 2 d g Re κ v ω | E ˜ z ( t ) ( ω , g ) | 2 .
E z ( t , y , x ) = 4 π p d ω F ˜ ( ω ) e i ω ( t y / V y ) ( n g / cos α ) 2 ε ( ω ) × ( e i ω x / V n v + n g n v + n c e i n c ω x / c ) ,
E z ( ξ , x ) = 4 π p n c 0 2 n g 2 [ n v + n g n v + n c 0 × F ( ξ x n c 0 c ) F ( ξ x V ) ]
E z ( ξ , x ) = 4 π p n c 0 2 n g 2 { F ( ξ x n c 0 c ) [ n g n c 0 + | n v | 2 n c 0 2 + | n v | 2 + | n v | n c 0 n g n c 0 2 + | n v | 2 erfi ( ξ x n c 0 c ) ] F ( ξ x V ) }
L w = c τ FWHM n c 0 n g = c τ FWHM ( ε 0 n g 2 tan 2 α ) 1 / 2 n g .
E z ( ξ , x ) 2 π p x ( c n g ) 1 d F / d η ,
E max = 4 π p ( n c 0 2 n g 2 ) 1 .
E z ( η ) = 4 π 3 / 2 p τ ( ω TO 2 ω 0 2 γ 2 / 4 ) 2 ω 0 ω TO 2 ( ε 0 ε ) e ( ω 0 2 γ 2 / 4 ) τ 2 / 4 × e γ η / 2 sin [ ω 0 ( η γ τ 2 / 4 ) ]
ω 0 = ω TO n g 2 ε 0 cos 2 α n g 2 ε cos 2 α γ 2 4 ω TO 2 .
L b = π c ω b | n c ( ω b ) n g |
L e = 2 c cos α γ n g [ cos α n g v g ( ω 0 ) / c ] .
L tw = FWHM cot α cr = n g FWHM ( ε 0 n g 2 ) 1 / 2
E ˜ z ( ω , g , x ) = 2 π ω 2 p i κ c 2 G ˜ ( g ω V y ) e i κ x 0 x d x F ˜ ( ω , x ) e i ω V x + i κ x ,

Metrics