Abstract

A dynamic model for the multiphoton interactions of an organic nonlinear absorber with pulsed lasers of various pulse durations spanning the femtosecond-to-microsecond time scale is presented. The formalism applies to all nonlinear absorbers with two-photon and singlet and triplet excited-state absorptions. Our quantitative analyses of experimental nonlinear transmission data and detailed exposition of the molecular dynamics have clearly illustrated the dynamic roles played by ground- and excited-states population saturation and depletion effects and their critical dependence on the laser intensity and temporal characteristics in governing the nonlinear transmission of pulsed lasers in such media.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
    [CrossRef] [PubMed]
  2. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010) and references therein.
    [CrossRef]
  3. I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
    [CrossRef]
  4. H. Ma and A. K.-Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater. 13, 1201–1205 (2001).
    [CrossRef]
  5. J. M. Hales and J. W. Perry, “Organic and polymeric 3rd-order nonlinear optical materials and device applications,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S.Sun and L.Dalton, eds. (CRC, 2008).
  6. K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
    [CrossRef]
  7. C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
    [CrossRef]
  8. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
    [CrossRef] [PubMed]
  9. G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
    [CrossRef]
  10. N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
    [CrossRef]
  11. G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
    [CrossRef]
  12. M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081–1083(2001).
    [CrossRef]
  13. F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
    [CrossRef]
  14. I. C. Khoo, Andres Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large dynamic range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B 21, 1234–1240 (2004).
    [CrossRef]
  15. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
    [CrossRef]
  16. I. C. Khoo, “Nonlinear organic liquid cored fiber array for all-optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron. 14, 946–951(2008).
    [CrossRef]
  17. I. C. Khoo, “Nonlinear optics of liquid crystals,” Phys. Rep. 471, 221–267 (2009).
    [CrossRef]
  18. K. M. Nashold and D. P. Walter, “Investigation of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  19. C. P. Singh, K. S. Bindra, G. M. Bhalerao, and S. M. Oak, “Investigation of optical limiting in iron oxide nanoparticles,” Opt. Express 16, 8440–8450 (2008).
    [CrossRef] [PubMed]
  20. R. C. Hoffman, K. A. Stetyick, R. S. Potember, and D. G. McLean, “Reverse saturable absorbers—indanthrone and its derivatives,” J. Opt. Soc. Am. B 6, 772–777 (1989).
    [CrossRef]
  21. H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
    [CrossRef]
  22. W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
    [CrossRef]
  23. I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid crystalline fiber,” Appl. Phys. B 59, 573–580 (1994).
    [CrossRef]
  24. I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
    [CrossRef]
  25. U. A. Hrozhyk, A. Uladzimir, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (3)

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystals,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

2008 (4)

C. P. Singh, K. S. Bindra, G. M. Bhalerao, and S. M. Oak, “Investigation of optical limiting in iron oxide nanoparticles,” Opt. Express 16, 8440–8450 (2008).
[CrossRef] [PubMed]

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

I. C. Khoo, “Nonlinear organic liquid cored fiber array for all-optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron. 14, 946–951(2008).
[CrossRef]

2007 (2)

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

2006 (1)

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

2005 (1)

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

2004 (3)

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

I. C. Khoo, Andres Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large dynamic range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B 21, 1234–1240 (2004).
[CrossRef]

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

2001 (3)

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

H. Ma and A. K.-Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater. 13, 1201–1205 (2001).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081–1083(2001).
[CrossRef]

1998 (1)

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid crystalline fiber,” Appl. Phys. B 59, 573–580 (1994).
[CrossRef]

1989 (1)

Albota, M.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Badaeva, E.

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Baev, A.

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

Belfield, K. D.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Beljonne, D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Bhalerao, G. M.

Bindra, K. S.

Blanchard-Desce, M.

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Bredas, J. L.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Bunning, T. J.

Chapela, V. M.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Chen, P. H.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

Chen, W. Z.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Christodoulides, D. N.

Diaz, A.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

Diaz, Andres

Ding, J.

Douglas, E. P.

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

Drobizhev, M.

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081–1083(2001).
[CrossRef]

Ehrlich, J. E.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Feng, F.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Feng, Y. P.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Fu, J. Y.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Guo, F. G.

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

Hagan, D. J.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Hales, J. M.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

J. M. Hales and J. W. Perry, “Organic and polymeric 3rd-order nonlinear optical materials and device applications,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S.Sun and L.Dalton, eds. (CRC, 2008).

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

Heikal, A. A.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Hess, S. E.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Hoffman, R. C.

Hrozhyk, U. A.

Jen, A. K.-Y.

H. Ma and A. K.-Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater. 13, 1201–1205 (2001).
[CrossRef]

Ji, W.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Jia, W. L.

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

Jin, X.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Kang, B. S.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Karotki, A.

Katan, C.

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Khoo, I. C.

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010) and references therein.
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystals,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

I. C. Khoo, “Nonlinear organic liquid cored fiber array for all-optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron. 14, 946–951(2008).
[CrossRef]

I. C. Khoo, Andres Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large dynamic range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B 21, 1234–1240 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid crystalline fiber,” Appl. Phys. B 59, 573–580 (1994).
[CrossRef]

Kogej, T.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Kubo, S.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Levin, M. D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Li, C. W.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Li, H.

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid crystalline fiber,” Appl. Phys. B 59, 573–580 (1994).
[CrossRef]

Lin, J. Y.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Lin, P.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Liou, J.

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Lu, C. G.

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

Ma, H.

H. Ma and A. K.-Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater. 13, 1201–1205 (2001).
[CrossRef]

Makarov, N. S.

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

Mallouk, T. E.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Marder, S. R.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

McCord-Maughon, D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

McLean, D. G.

Morales, A. R.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Nashold, K. M.

Oak, S. M.

Padilha, L. A.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Pan, H.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Peceli, D.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Percino, J.

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Perry, J. W.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

J. M. Hales and J. W. Perry, “Organic and polymeric 3rd-order nonlinear optical materials and device applications,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S.Sun and L.Dalton, eds. (CRC, 2008).

Potember, R. S.

Prasad, P. N.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

Rebane, A.

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, “Dendrimer molecules with record large two-photon absorption cross section,” Opt. Lett. 26, 1081–1083(2001).
[CrossRef]

Rockel, H.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Rumi, M.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Salamo, G. J.

Serak, S. V.

Shui, M.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Singh, C. P.

Song, Y. L.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Spahni, H.

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

Spangler, C. W.

Stegeman, G. I.

Stetyick, K. A.

Stinger, M. V.

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

Su, X. Y.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Subramaniam, C.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Sun, W. F.

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

Tabiryan, N. V.

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

Terenziani, F.

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Tretiak, S.

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Uladzimir, A.

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010) and references therein.
[CrossRef]

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Walter, D. P.

Wang, Y. X.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Webb, W. W.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Webster, S.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

White, T. J.

Wolleb, H.

N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H. Spahni, “Optimizing two-photon absorption for volumetric optical data storage,” J. Opt. Soc. Am. B B24, 1874–1885(2007).
[CrossRef]

Wood, M. V.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

Wu, X. L.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Xu, C.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Xu, H. Y.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Yang, J. Y.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Yang, K.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Youngblood, W. J.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

Zhang, X. R.

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

Zheng, Q. D.

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

Adv. Mater. (2)

H. Ma and A. K.-Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater. 13, 1201–1205 (2001).
[CrossRef]

F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, “Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments,” Adv. Mater. 20, 4641–4678 (2008).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid crystalline fiber,” Appl. Phys. B 59, 573–580 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

W. L. Jia, E. P. Douglas, F. G. Guo, and W. F. Sun, “Optical limiting of semiconductor nanoparticles for nanosecond laser pulses,” Appl. Phys. Lett. 85, 6326–6328 (2004).
[CrossRef]

Chem. Mater. (1)

K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, “Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641(2004).
[CrossRef]

Chem. Rev. (1)

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton-absorbing materials: molecular designs, characterizations, and applications.” Chem. Rev. 108, 1245–1330(2008).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

G. S. He, Q. D. Zheng, C. G. Lu, and P. N. Prasad, “Two- and three-photon absorption-based optical limiting and stabilization using a liquid dye,” IEEE J. Quantum Electron. 41, 1037–1043(2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, “Passive optical limiting of picosecond–nanosecond lasers using highly nonlinear organic liquid cored fiber array,” IEEE J. Sel. Top. Quantum Electron. 7, 760–768 (2001).
[CrossRef]

I. C. Khoo, “Nonlinear organic liquid cored fiber array for all-optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron. 14, 946–951(2008).
[CrossRef]

J. Appl. Phys. (1)

G. S. He, Q. D. Zheng, A. Baev, and P. N. Prasad, “Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation,” J. Appl. Phys. 101, 083108 (2007).
[CrossRef]

J. Mater. Chem. (1)

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. Liou, A. Diaz, T. E. Mallouk, P. Lin, D. Peceli, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Synthesis and characterization of the multiphoton absorption and excited-state properties of 4-propyl 4’-butyl diphenyl acetylene,” J. Mater. Chem. 19, 7525–7531(2009).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. (1)

C. W. Li, K. Yang, F. Feng, X. Y. Su, J. Y. Yang, X. Jin, M. Shui, Y. X. Wang, X. R. Zhang, Y. L. Song, and H. Y. Xu, “Investigation of two-photon-absorption-induced excited state absorption in a fluorenyl-based chromophore,” J. Phys. Chem. 113, 15730–15733 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

I. C. Khoo, “Nonlinear optics of liquid crystals,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

Science (1)

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Other (1)

J. M. Hales and J. W. Perry, “Organic and polymeric 3rd-order nonlinear optical materials and device applications,” in Introduction to Organic Electronic and Optoelectronic Materials and Devices, S.-S.Sun and L.Dalton, eds. (CRC, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Molecular energy level structure of an organic neat liquid that possesses sizeable ground-state two-photon absorption, and singlet and triplet excited-state single-photon transitions.

Fig. 2
Fig. 2

(a) Femtosecond z-scan of a 2 mm thick L34 and the intensity-dependent effective nonlinear absorption coefficient β eff estimated by fitting the nonlinear transmission by an equation of the form d I / d z = β eff I 2 . Laser parameters: pulse width τ p = 140 fs ; pulse repetition rate, 1 KHz ; focused beam waist ω o = 24 μm ; wavelength ranges, from (top)  λ = 520 nm to (bottom)  600 nm . Similar results are obtained with single-pulse measurement. (b) (Triangles) effective nonlinear absorption coefficient β eff as an increasing function of laser intensity obtained by picosecond z-scan of a 0.5 mm thick L34. Laser parameters: pulse width τ p = 14 ps ; focused beam waist ω o = 10.5 μm ; λ = 532 nm . Also plotted in squares and triangles are values of β eff for two other pure TPA organic neat liquids. (c) Effective nonlinear absorption coefficient β eff as a function of laser fluence (note: 1 J / cm 2 corresponds to 0.23 GW / cm 2 ) obtained by nanosecond z-scan of a 0.5 mm thick L34. Laser parameters: pulse width τ p = 2.49 ns ; focused beam waist ω o = 13.5 μm ; λ = 532 nm . Bottom right-hand corner shows plots of β eff for two other neat organic liquids for comparison purposes.

Fig. 3
Fig. 3

(a) Population of the ground-state N 1 as a function of laser intensity for various laser pulse durations ranging from (lowest curve) 0.1 ps to (highest curve) 0.1 μs . (b) Population of the excited-state N 2 as a function of laser intensity for various laser pulse durations ranging from (right) 0.1 ps to (left) 0.1 μs . (c) Population of the ground-state N 5 as a function of laser intensity for various laser pulse durations ranging from (right) 0.1 ps to (left) 0.1 μs .

Fig. 4
Fig. 4

(a) Population of the ground-state N 1 and excited-state N 6 as a function of input laser energy intensity for various intrinsic two-photon absorption coefficients β. Laser pulse duration, 100 fs . (b) Population of the ground-state N 1 and excited-state N 6 as a function of input laser energy intensity for various intrinsic two-photon absorption coefficients β. Laser pulse-duration, 1 ps . (c) Population of the ground-state N 1 and excited-state N 6 as a function of input laser energy intensity for various intrinsic two-photon absorption coefficients β. Laser pulse-duration, 10 ps . (d) Calculated output versus input laser pulse energies for laser pulse durations ranging from (bottom) 0.1 ps to (top) 0.1 μs . Parameters: sample length, 2 mm ; α exc = 1.7 × 10 4 cm 1 ; α exc - d = 5.0 × 10 4 cm 1 ; α g = 0.136 cm 1 ; τ 2 = 0.1 ns ; τ 3 = 10 ps ; τ 6 = 1 ps ; β = 0.35 cm / GW ; beam waist ω o = 10 μm ; λ = 532 nm ; peak intensity = 5.98 × 10 5 GW / cm 2 (for τ p = 0.1 ps and input laser energy of 100 μJ ) or 5.98 × 10 1 GW / cm 2 (for τ p = 0.1 μs ).

Fig. 5
Fig. 5

(a) Calculated normalized transmission (output/input) versus input laser pulse energies for (long) laser pulse- durations ranging from (left) 1 ns to (right) 10 μs . Parameters: sample length, 2 mm ; N o = 2.04787 × 10 21 cm 3 ; α exc = 1.7 × 10 4 cm 1 ; α exc - d = 5.0 × 10 4 cm 1 ; α g = 0.136 cm 1 ; τ 2 = 0.1 ns ; β = 4.11 cm / GW , beam waist ω o = 10 μm ; λ = 532 nm . Relaxation time constant from high- lying triplet - excited state = τ 3 = 100 ps . (b) Calculated normalized transmission (output/input) versus input laser pulse energies for (long) laser pulse-durations ranging from (left) 1 ns to (right) 10 μs . Parameters: sample length, 2 mm ; N o = 2.04787 × 10 21 cm 3 ; α exc = 1.7 × 10 4 cm 1 ; α exc - d = 5.0 × 10 4 cm 1 ; α g = 0.136 cm 1 ; τ 2 = 0.1 ns ; β = 4.11 cm / GW , beam waist ω o = 10 μm ; λ = 532 nm . Relaxation time constant from high-lying triplet triplet - excited state = τ 3 = 10 ps .

Fig. 6
Fig. 6

(a)–(g) Plots for various laser pulse-durations ranging from 0.1 ps to 0.1 μs of the spatial dependence of individual contribution from various singlet and triplet excited states in the nonlinear absorption and transmission of the laser. Parameters: sample length, 2 mm ; N o = 2.04787 × 10 21 cm 3 ; α exc = 1.7 × 10 4 cm 11 ; α exc - d = 5.0 × 10 4 cm 1 ; α g = 0.136 cm 1 ; τ 2 = 0.1 ns ; τ 3 = 10 ps ; τ 6 = 1 ps ; β = 0.35 cm / GW , beam waist ω o = 10 μm ; λ = 532 nm .

Fig. 7
Fig. 7

Plots of β eff values for different laser pulse durations and input laser energies; β eff values are deduced by representing the nonlinear transmission process with an effective nonlinear absorption parameter. Note: The β eff values for τ p = 0.1 to 1 ps are 0.5 cm / GW and are therefore not included in this figure with the scale used. Same parameters used as in Fig. 6: sample length, 2 mm ; N o = 2.04787 × 10 21 cm 3 ; α exc = 1.7 × 10 4 cm 1 ; α exc - d = 5.0 × 10 4 cm 1 ; α g = 0.136 cm 1 ; τ 2 = 0.1 ns ; τ 3 = 10 ps ; τ 6 = 1 ps ; β = 0.35 cm / GW , beam waist ω o = 10 μm ; λ = 532 nm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( r , t ) = I max e 4 ( ln 2 ) ( t / τ p ) 2 e 2 r 2 / w 0 2 .
N 1 t = ( β I 2 2 h ν N 0 + α g I h ν N 0 ) N 1 N 2 t = β I 2 2 h ν N 0 N 1 1 τ 2 N 2 α exc - d I h ν N 0 N 2 + 1 τ 6 N 6 N 3 t = α exc I h ν N 0 N 5 1 τ 3 N 3 N 4 t = α g I h ν N 0 N 1 N 5 t = 1 τ 2 N 2 α exc I h ν N 0 N 5 + 1 τ 3 N 3 N 6 t = α exc - d I h ν N 0 N 2 1 τ 6 N 6 .
d I d z = ( α g N 1 N 0 I + α exc N 5 N 0 I + α exc - d N 2 N 0 I + β N 1 N 0 I 2 ) .
TPA :     d I d z = β N 1 N 0 I 2 Direct   ESA :     d I d z = α exc - d N 2 N 0 I Triplet   ESA :     d I d z = α exc N 5 N 0 I Linear absorption :     d I d z = α g N 1 N 0 I .
Δ t min ( 2 C I max + B I max 2 , 2 1 τ 3 + I max D , 4 1 τ 2 + 1 τ 6 + I max E + ( 1 τ 2 1 τ 6 ) + ( I max E + 2 τ 2 + 2 τ 6 ) I max E ) .
Δ z 2 α g N 1 N 0 + α exc N 5 N 0 + α exc - d N 2 N 0 + 2 β N 1 N 0 I 0 .

Metrics