Abstract

We present a simple and intuitive model based on the impulse response of linear electrical systems for describing the propagation of optical pulses through a dynamic Fabry–Perot resonator whose refractive index changes with time. Our model shows that the adiabatic wavelength conversion process in resonators results from a scaling of the round-trip time with index changes. For pulses longer than the cavity round-trip time, we find that more energy can be transferred to the new wavelength when the input pulses are slightly detuned from the cavity resonance and the refractive index does not change too rapidly. In fact, the optimum duration of index changes scales with the photon lifetime of the resonator. We describe the evolution of the shape and spectrum of picosecond pulses inside a resonator under a variety of input conditions and with the magnitude and duration of index variations. We also apply our general theory to the case of pulses whose widths are shorter than the round-trip time and derive an analytical expression for the output field under quite general conditions. This analysis reveals a shifting of the spectral comb as well as compression of the temporal pulse train that depends on the both the magnitude and sign of the index change. Our results should find applications in the area of optical signal processing using resonant photonic structures.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral and temporal changes of optical pulses propagating through time-varying linear media

Yuzhe Xiao, Govind P. Agrawal, and Drew N. Maywar
Opt. Lett. 36(4) 505-507 (2011)

Efficient adiabatic wavelength conversion in Gires–Tournois resonators

Brian A. Daniel, Drew N. Maywar, and Govind P. Agrawal
Opt. Lett. 36(21) 4155-4157 (2011)

Dynamic mode theory of optical resonators undergoing refractive index changes

Brian A. Daniel, Drew N. Maywar, and Govind P. Agrawal
J. Opt. Soc. Am. B 28(9) 2207-2215 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription