Abstract

We investigate the magnetic resonant modes in the coupled nanosandwich (CSW) structure, which can be considered a metamolecule composed of two meta-atoms (nanosandwiches). The coupling between two nanosandwiches leads to two magnetic resonant modes, the split of the single magnetic resonant mode. Moreover, the coupling effect in a more complicated system that consists of two closely placed CSWs is studied, where four magnetic resonant modes with different phase relationships between meta-atoms are observed. It is shown that the interaction between CSWs leads to this secondary split of the magnetic resonant mode. We further consider a one-dimensional metacrystal formed by a chain of CSWs, and directly observe the magnetic plasmon (MP) bands through the Fourier transformation approach. Modifying both the thickness of the middle metal layer of CSWs and the spacing between CSWs, one can efficiently engineer the MP band, and even open a bandgap. Such a CSW chain can even work as a subwavelength waveguide, which may have potential applications in nano-optics and photonics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
    [CrossRef]
  2. M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
    [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  6. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
    [CrossRef] [PubMed]
  8. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [CrossRef] [PubMed]
  9. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
    [CrossRef] [PubMed]
  10. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
    [CrossRef]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [CrossRef]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
    [CrossRef]
  13. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [CrossRef] [PubMed]
  14. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
    [CrossRef] [PubMed]
  15. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
    [CrossRef]
  16. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
    [CrossRef] [PubMed]
  17. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “Negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).
    [CrossRef] [PubMed]
  18. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
    [CrossRef]
  19. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.
  20. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
    [CrossRef]
  21. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
    [CrossRef]
  22. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
    [CrossRef]
  23. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
    [CrossRef]
  24. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
    [CrossRef]
  25. T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
    [CrossRef] [PubMed]
  26. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
    [CrossRef]
  27. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
    [CrossRef] [PubMed]
  28. G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
    [CrossRef]
  29. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
    [CrossRef]
  30. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
    [CrossRef]
  31. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  32. V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
    [CrossRef]
  33. M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
    [CrossRef]

2009 (7)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

2008 (4)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

2007 (2)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “Negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).
[CrossRef] [PubMed]

2006 (6)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

2005 (6)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

2004 (3)

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

2002 (2)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Baena, J. D.

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

Boltasseva, A.

Brueck, S. R.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

Burger, S.

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

Cai, W.

Cao, J. X.

Chettiar, U. K.

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Decker, M.

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

Dolling, G.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

Dong, Z. G.

Drachev, V. P.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Falcone, F.

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Freire, M. J.

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

Giessen, H.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Grigorenko, A. N.

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

Kildishev, A. V.

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Leuchs, G.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Li, C.

Li, J. Q.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Li, T.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Linden, S.

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Liu, H.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

Liu, N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Liu, Y. M.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Lomanets, V.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Makhnovskiy, D. P.

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

Marqués, R.

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Onishchukov, G.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

Panina, L. V.

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Peschel, U.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

Sarychev, A. K.

Schädle, A.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Shamonina, E.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

Solymar, L.

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Sydoruk, O.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

Tatartschuk, E.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

Wang, F. M.

Wang, Q. J.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Wang, S. M.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Wegener, M.

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

Ye, R. X.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

Yuan, H.

Yuan, H. K.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef] [PubMed]

Zhang, X.

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Zhu, S. N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17, 11486–11494(2009).
[CrossRef] [PubMed]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16, 3560–3565 (2008).
[CrossRef] [PubMed]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Zhu, Y. Y.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Zhu, Z. H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

Zhuromskyy, O.

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

Adv. Mater. (1)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Selective switch made from a graded nanosandwich chain,” Appl. Phys. Lett. 93, 233102 (2008).
[CrossRef]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87, 072501 (2005).
[CrossRef]

M. Beruete, F. Falcone, M. J. Freire, R. Marqués, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88, 083503 (2006).
[CrossRef]

J. Appl. Phys. (2)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).
[CrossRef]

V. Lomanets, O. Zhuromskyy, G. Onishchukov, O. Sydoruk, E. Tatartschuk, E. Shamonina, G. Leuchs, and U. Peschel, “Interacting waves on chains of split-ring resonators in the presence of retardation,” J. Appl. Phys. 106, 104908 (2009).
[CrossRef]

Nat. Photon. (1)

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (5)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004).
[CrossRef]

M. Decker1, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
[CrossRef]

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401-1–047401-4 (2008).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902-1–243902-4 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404-1–137404-4 (2005).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902-1–223902-4 (2005).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi B 246, 1397–1406 (2009).
[CrossRef]

Science (7)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub—diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[CrossRef] [PubMed]

Other (1)

H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Chapter 11 in Metamaterials Theory, Design and Applications, T.J.Cui, D.R.Smith, and R.P.Liu, eds. (Springer, 2009), pp. 247–269.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Magnetic field excited in a single nanosandwich and in a CSW. The geometry of a CSW is shown in the inset, where the yellow layers (top, middle, and bottom) correspond to the metallic layers and the blue layers (second and fourth) are dielectric layers.

Fig. 2
Fig. 2

Electric field, free current, and magnetic field distribution in y z plane ( x = 0 ) of (a)–(c) the symmetric mode and (d)–(f) antisymmetric mode.

Fig. 3
Fig. 3

Magnetic resonant frequencies of the symmetric mode and the antisymmetric mode.

Fig. 4
Fig. 4

Magnetic field excited in two coupled CSW systems. The geometry of the system is shown in the inset.

Fig. 5
Fig. 5

Electric field, free current, and magnetic field distribution in y z plane ( x = 0 ) at (a)–(c)  f 1 and (d)–(f)  f 3 .

Fig. 6
Fig. 6

Electric field, free current, and magnetic field distribution in y z plane ( x = 0 ) at (a)–(c)  f 2 and (d)–(f)  f 4 .

Fig. 7
Fig. 7

(a) Structure of the CSW chain, (b) Dispersion relationship of the CSW chain with a = 200 nm , b = 300 nm , p = 400 nm , and d = 25 nm .

Fig. 8
Fig. 8

Energy band diagram of CSW chain.

Fig. 9
Fig. 9

(a) Dispersion relationship of the CSW chain with a = 200 nm , b = 300 nm , p = 400 nm , and d = 25 nm ; (b) dispersion relationship of the CSW chain with a = 200 nm , b = 300 nm , p = 400 nm , and d = 40 nm ; (c) dispersion relationship of the CSW chain with a = 200 nm , b = 300 nm , p = 500 nm , and d = 25 nm .

Fig. 10
Fig. 10

(a) Power flow at cross section with y = 3500 nm ; (b) power flow at z = 0 along the chain.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = L 2 ( q ˙ 1 2 + q ˙ 2 2 ) 1 2 C ( q 1 2 + q 2 2 ) + α q ˙ 1 q ˙ 2 ,
f 01 = ω 1 2 π = 1 2 π 1 L + α 1 C and f 02 = ω 2 2 π = 1 2 π 1 L α 1 C .
I = L 2 ( q ˙ 1 2 + q ˙ 1 2 + q ˙ 2 2 + q ˙ 2 2 ) 1 2 C ( q 1 2 + q 1 2 + q 2 2 + q 2 2 ) + α [ q ˙ 1 q ˙ 1 + q ˙ 2 q ˙ 2 ] 1 2 C 1 [ ( q 1 q 2 ) 2 + ( q 1 q 2 ) 2 ] ,
f 1 = 1 2 π 1 L + α 1 C , f 2 = 1 2 π 1 L α 1 C , f 3 = 1 2 π 1 L + α ( 1 C + 2 C 1 ) , f 4 = 1 2 π 1 L α ( 1 C + 2 C 1 ) .

Metrics