Abstract

We propose a two-dimensional photonic crystal line-defect waveguide, in which the two rows of air holes at the two sides of the line defect are infiltrated with dielectric materials. This waveguide exhibits an ultralow high-order-dispersion photonic band. Finite-difference time-domain simulation shows that ultralow high-order dispersion makes an ultrashort Gaussian pulse with width of 0.711ps or even shorter, to 0.267ps, propagate without observable pulse broadening and amplitude decrease in a 96μm long waveguide. The slow light with group velocity of 0.0239c in a very wide bandwidth of 1.876THz can theoretically propagate as far as 711μm with tolerable spread.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059(2002).
    [CrossRef]
  2. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
    [CrossRef]
  3. T. Fujisawa and M. Koshiba, “Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing,” J. Lightwave Technol. 24, 617–623 (2006).
    [CrossRef]
  4. L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  5. C. Chang-Hasnain and S. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006).
    [CrossRef]
  6. L. Shi, X. Chen, L. Xing, and W. Tan, “Compact and tunable slow and fast light device based on two coupled dissimilar optical nanowires,” J. Lightwave Technol. 26, 3714–3720 (2008).
    [CrossRef]
  7. D. Sun and P. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
    [CrossRef]
  8. L. Zhang, T. Luo, C. Yu, W. Zhang, and A. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25, 1754–1760 (2007).
    [CrossRef]
  9. Z. Zhu, A. Dawes, D. Gauthier, L. Zhang, and A. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  10. G. Gehring, R. Boyd, A. Gaeta, D. Gauthier, and A. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
    [CrossRef]
  11. B. Zhang, L. Yan, L. Zhang, and A. Willner, “Multichannel SBS Slow Light Using Spectrally Sliced Incoherent Pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
    [CrossRef]
  12. C. Lin, W. Zhang, Y. Huang, and J. Peng, “Defect Bragg fiber with low loss for broadband and zero dispersion slow light,” J. Lightwave Technol. 25, 3776–3783 (2007).
    [CrossRef]
  13. L. Schenato, M. Santagiustina, and C. Someda, “Fundamental and random birefringence limitations to delay in slow light fiber parametric amplification,” J. Lightwave Technol. 26, 3721–3726(2008).
    [CrossRef]
  14. Y. Chen, W. Xue, F. Öhman, and J. Mørk, “Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides,” J. Lightwave Technol. 26, 3734–3743(2008).
    [CrossRef]
  15. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  16. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  17. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  18. P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005).
    [CrossRef]
  20. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
    [CrossRef] [PubMed]
  21. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004).
    [CrossRef]
  22. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
    [CrossRef]
  23. H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
    [CrossRef]
  24. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  25. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  26. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006).
    [CrossRef] [PubMed]
  27. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef] [PubMed]
  28. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
    [CrossRef] [PubMed]
  29. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
    [CrossRef] [PubMed]
  30. A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef] [PubMed]
  31. L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009).
    [CrossRef]
  32. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef] [PubMed]
  33. M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
    [CrossRef]
  34. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
    [CrossRef]
  35. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
    [CrossRef]
  36. R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  37. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  38. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
    [CrossRef]
  39. J. B. Khurgin, “Expanding the bandwidth of slow-light photonic devices based on coupled resonators,” Opt. Lett. 30, 513–515(2005).
    [CrossRef] [PubMed]
  40. B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003).
    [CrossRef]
  41. J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
    [CrossRef]
  42. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [CrossRef]
  43. A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwaveguide light,” Phys. Rev. Lett. 103, 043906 (2009).
    [CrossRef] [PubMed]
  44. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
    [CrossRef]
  45. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
    [CrossRef] [PubMed]
  46. K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
    [CrossRef]
  47. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
    [CrossRef]
  48. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
    [CrossRef] [PubMed]

2010 (5)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

2009 (4)

2008 (11)

L. Shi, X. Chen, L. Xing, and W. Tan, “Compact and tunable slow and fast light device based on two coupled dissimilar optical nanowires,” J. Lightwave Technol. 26, 3714–3720 (2008).
[CrossRef]

L. Schenato, M. Santagiustina, and C. Someda, “Fundamental and random birefringence limitations to delay in slow light fiber parametric amplification,” J. Lightwave Technol. 26, 3721–3726(2008).
[CrossRef]

Y. Chen, W. Xue, F. Öhman, and J. Mørk, “Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides,” J. Lightwave Technol. 26, 3734–3743(2008).
[CrossRef]

G. Gehring, R. Boyd, A. Gaeta, D. Gauthier, and A. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

B. Zhang, L. Yan, L. Zhang, and A. Willner, “Multichannel SBS Slow Light Using Spectrally Sliced Incoherent Pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

D. Sun and P. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (4)

2005 (7)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005).
[CrossRef]

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
[CrossRef]

J. B. Khurgin, “Expanding the bandwidth of slow-light photonic devices based on coupled resonators,” Opt. Lett. 30, 513–515(2005).
[CrossRef] [PubMed]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

2004 (3)

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003 (1)

B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003).
[CrossRef]

2002 (1)

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

Agrawal, G. P.

P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ahopelto, J.

Andreani, L. C.

Baba, T.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
[CrossRef] [PubMed]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Baida, F. I.

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Behroozi, C. H.

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bernal, M.-P.

Borel, P. I.

Boyd, R.

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

Casey, B. G.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Cassan, E.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, X.

Chen, Y.

Chuang, S.

Chun, J.

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Dai, L.

Dawes, A.

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

De Sterke, C. M.

J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Dingshan, G.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Dobson, P. S.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Dutton, Z.

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
[CrossRef] [PubMed]

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
[CrossRef] [PubMed]

J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Eich, M.

M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Fan, S.

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

Frandsen, L. H.

Fujisawa, T.

Gaeta, A.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Gauthier, D.

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Gehring, G.

Gomez-Iglesias, A.

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
[CrossRef] [PubMed]

Hamachi, Y.

Harris, S. E.

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Huang, Y.

Ibanescu, M.

Ippen, E.

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

Jiang, C.

Jin, H.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Jing, M.

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kaminow, I. P.

P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Karalis, A.

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwaveguide light,” Phys. Rev. Lett. 103, 043906 (2009).
[CrossRef] [PubMed]

Kawasaki, T.

Kelley, P. L.

P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Khurgin, J. B.

Koshiba, M.

Kosmidou, E. P.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
[CrossRef]

Krauss, T. F.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef] [PubMed]

Kriezis, E. E.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
[CrossRef]

Ku, P.

Kubo, S.

Kuipers, L.

Kurt, H.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Lavrinenko, A. V.

Leroux, X.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Li, J.

Lin, C.

Lipsanen, H.

Lister, K. A.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Littler, I. C.

J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Luo, T.

Macintyre, D. S.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Macke, B.

B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003).
[CrossRef]

Marris-Morini, D.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Michaeli, A.

Mok, J. T.

J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
[CrossRef] [PubMed]

Mori, D.

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

Mørk, J.

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Mulot, M.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

Öhman, F.

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Peng, J.

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Petrov, A. Yu.

M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005).
[CrossRef]

Povinelli, M. L.

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

Ran, H.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Roussey, M.

Salib, M.

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

Santagiustina, M.

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

Saynatjoki, A.

Schenato, L.

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Segard, B.

B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003).
[CrossRef]

Settle, M. D.

Shi, L.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Soljacic, M.

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwaveguide light,” Phys. Rev. Lett. 103, 043906 (2009).
[CrossRef] [PubMed]

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059(2002).
[CrossRef]

Someda, C.

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[CrossRef]

Sun, D.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Tan, W.

Thoms, S.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Tsiboukis, T. D.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
[CrossRef]

Tucker, R. S.

Vivien, L.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Weaver, J. M. R.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

Wilkinson, C. D. W.

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Willner, A.

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Xing, L.

Xinliang, Z.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Xue, W.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yan, L.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yu, C.

Zhang, B.

Zhang, L.

Zhang, W.

Zhiping, Z.

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Zhu, Z.

Appl. Phys. Lett. (2)

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguide,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Eur. Phys. J. D (1)

B. Macke and B. Segard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23, 125–141 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Eich and A. Yu. Petrov, “Efficient approximation to calculate time delay and dispersion in linearly chirped periodical microphotonic structures,” IEEE J. Quantum Electron. 41, 1502–1509(2005).
[CrossRef]

M. Jing and J. Chun, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665(2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[CrossRef]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194(2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Ran, E. Cassan, H. Kurt, H. Jin, X. Leroux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhiping, and Z. Xinliang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

J. Lightwave Technol. (13)

R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

T. Fujisawa and M. Koshiba, “Finite-element modeling of nonlinear Mach-Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing,” J. Lightwave Technol. 24, 617–623 (2006).
[CrossRef]

C. Chang-Hasnain and S. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006).
[CrossRef]

Z. Zhu, A. Dawes, D. Gauthier, L. Zhang, and A. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

L. Zhang, T. Luo, C. Yu, W. Zhang, and A. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25, 1754–1760 (2007).
[CrossRef]

C. Lin, W. Zhang, Y. Huang, and J. Peng, “Defect Bragg fiber with low loss for broadband and zero dispersion slow light,” J. Lightwave Technol. 25, 3776–3783 (2007).
[CrossRef]

L. Shi, X. Chen, L. Xing, and W. Tan, “Compact and tunable slow and fast light device based on two coupled dissimilar optical nanowires,” J. Lightwave Technol. 26, 3714–3720 (2008).
[CrossRef]

L. Schenato, M. Santagiustina, and C. Someda, “Fundamental and random birefringence limitations to delay in slow light fiber parametric amplification,” J. Lightwave Technol. 26, 3721–3726(2008).
[CrossRef]

Y. Chen, W. Xue, F. Öhman, and J. Mørk, “Theory of optical-filtering enhanced slow and fast light effects in semiconductor optical waveguides,” J. Lightwave Technol. 26, 3734–3743(2008).
[CrossRef]

G. Gehring, R. Boyd, A. Gaeta, D. Gauthier, and A. Willner, “Fiber-based slow-light technologies,” J. Lightwave Technol. 26, 3752–3762 (2008).
[CrossRef]

B. Zhang, L. Yan, L. Zhang, and A. Willner, “Multichannel SBS Slow Light Using Spectrally Sliced Incoherent Pumping,” J. Lightwave Technol. 26, 3763–3769 (2008).
[CrossRef]

D. Sun and P. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
[CrossRef]

L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009).
[CrossRef]

J. Opt. (1)

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. B (3)

Microelectron. Eng. (1)

K. A. Lister, B. G. Casey, P. S. Dobson, S. Thoms, D. S. Macintyre, C. D. W. Wilkinson, and J. M. R. Weaver, “Pattern transfer of a 23 nm-period grating and Sub-15 nm dots into CVD diamond,” Microelectron. Eng. 73–74, 319–322 (2004).
[CrossRef]

Nat. Photon. (1)

T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008).
[CrossRef]

Nat. Phys. (1)

J. T. Mok, C. M. De Sterke, I. C. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[CrossRef]

Nature (1)

L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Express (8)

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450(2006).
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef] [PubMed]

A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef] [PubMed]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253(2008).
[CrossRef] [PubMed]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef] [PubMed]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635(2009).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguide in photonic crystals slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwaveguide light,” Phys. Rev. Lett. 103, 043906 (2009).
[CrossRef] [PubMed]

Other (2)

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[CrossRef]

P. L. Kelley, I. P. Kaminow, and G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic structure of the PhC waveguide filled with a row of dielectric rods on both sides of the line defect. (b) Photonic bandgap of the TE modes of the PhC structure with different diameters of air holes ( D = 184 and 200 nm ).

Fig. 2
Fig. 2

(a) Dependence of the photonic band of the waveguide with diameter D = 192 nm on the permittivity of the embedded dielectric material ε 1 increasing from 3.5 to 5.0. (b) Group velocity, (c) second-order dispersion, and (d) third-order dispersion of the waveguide modes corresponding to the photonic bands in Fig. 2a.

Fig. 3
Fig. 3

Comparison of group velocities, second-order dispersions, and third-order dispersions between the W1 waveguide and our waveguide, in which the diameter of the W1 waveguide is 169 nm and the diameter of our waveguide with the embedded dielectric material of ε 1 = 5.0 is 192 nm .

Fig. 4
Fig. 4

(a) Schematic of the waveguide used in FDTD simulations to study the propagation performance. An ultrashort Gaussian pulse is launched from the extended stripe and detection points are placed in the entrance and the exit of the waveguide to observe the changes in pulse shape. (b) Observed pulse shape in the exit of our HI waveguide and the W1 waveguide with the length of our waveguide increasing from 16 to 96 μm and that of the W1 waveguide increasing from 16 to 48 μm , where the structural parameters of our waveguide and the W1 waveguide are identical with the one in Fig. 3. (c) Snapshot of the hertz field distribution in our HI waveguide calculated by the FDTD method.

Fig. 5
Fig. 5

Observed pulse shape in the entrance and exit of the waveguide with the Gaussian pulse width decreasing from 0.711 to 0.267 ps . The length of waveguide is 96 μm and the other structural parameters of our waveguide are identical to those in Fig. 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 2 = d 2 k d ω 2 = 1 υ g 2 d υ g d ω .
β 3 = d 3 k d ω 3 = d β 2 d ω .
L D = T 0 2 | β 2 | ,

Metrics