Abstract

Nanoplasmonic wavelength demultiplexing (WDM) structures based on metal-insulator-metal waveguides are designed and investigated numerically. The WDM structures possess a series of resonator-based channel drop filters near a bus waveguide. The demultiplexing wavelength of each channel can be tuned by adjusting the geometrical parameters and refractive index of the resonator. The numerical results based on the finite-difference time-domain method can be accurately explained by the resonant theory. Meanwhile, the transmission characteristics of the drop waveguide are influenced by the coupling distance between the resonator and drop/bus waveguides, which can be exactly analyzed by the temporal coupled-mode theory. Additionally, it is found that the drop efficiencies can be improved by a factor of more than 1.8 when a reflection feedback is introduced in the bus waveguide.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  4. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
    [CrossRef] [PubMed]
  5. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
    [CrossRef] [PubMed]
  6. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
    [CrossRef] [PubMed]
  7. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [CrossRef]
  9. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
    [CrossRef]
  10. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal—dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009).
    [CrossRef] [PubMed]
  11. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
    [CrossRef] [PubMed]
  12. D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
    [CrossRef]
  13. G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010).
    [CrossRef] [PubMed]
  14. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009).
    [CrossRef] [PubMed]
  15. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010).
    [CrossRef]
  16. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [CrossRef] [PubMed]
  17. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [CrossRef] [PubMed]
  18. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
    [CrossRef]
  19. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
    [CrossRef]
  20. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736(2009).
    [CrossRef] [PubMed]
  21. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010).
    [CrossRef] [PubMed]
  22. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
    [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
    [CrossRef]
  24. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
    [CrossRef] [PubMed]
  25. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27, 323–327 (2010).
    [CrossRef]
  26. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
    [CrossRef]
  27. T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009).
    [CrossRef]
  28. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
    [CrossRef] [PubMed]
  29. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
    [CrossRef] [PubMed]
  30. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009).
    [CrossRef]
  31. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
    [CrossRef] [PubMed]
  32. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
    [CrossRef]
  33. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26, 2623–2633 (2009).
    [CrossRef]
  34. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
    [CrossRef] [PubMed]
  35. A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
    [CrossRef]
  36. M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of surface plasmon polariton waves,” Opt. Express 18, 8800–8805 (2010).
    [CrossRef] [PubMed]
  37. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010).
    [CrossRef]
  38. F. Hu, H. Yi, and Z. Zhou, “A wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011).
    [CrossRef] [PubMed]
  39. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
    [CrossRef] [PubMed]
  40. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010).
    [CrossRef] [PubMed]
  41. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  42. Z. Zhong, Y. Xu, S. Lan, Q. Dai, and L. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010).
    [CrossRef] [PubMed]
  43. S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518–5525 (2004).
    [CrossRef] [PubMed]

2011 (4)

2010 (10)

Z. Zhong, Y. Xu, S. Lan, Q. Dai, and L. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010).
[CrossRef] [PubMed]

G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010).
[CrossRef] [PubMed]

J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27, 323–327 (2010).
[CrossRef]

M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of surface plasmon polariton waves,” Opt. Express 18, 8800–8805 (2010).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010).
[CrossRef] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef] [PubMed]

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010).
[CrossRef]

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010).
[CrossRef]

2009 (10)

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736(2009).
[CrossRef] [PubMed]

H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal—dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009).
[CrossRef] [PubMed]

S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009).
[CrossRef] [PubMed]

I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26, 2623–2633 (2009).
[CrossRef]

T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009).
[CrossRef]

2008 (2)

2007 (2)

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

2006 (5)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
[CrossRef]

2005 (5)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
[CrossRef]

K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
[CrossRef]

2004 (3)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Akjouj, A.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Berini, P.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010).
[CrossRef]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

Bozhevolnyi, S.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Chen, J.

Chen, W. B.

Chremmos, I.

Dai, Q.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

Dobrzynski, L.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

Donghyun, K.

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Duan, L.

Ebbesen, T.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Enoch, S.

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Gan, Q. Q.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Gillet, J. N.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

Gong, Y.

González, M. U.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
[CrossRef]

Hu, F.

Hu, X.

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Huang, X.

Huang, X. G.

Jin, X.

Jin, X. P.

Kim, H.

Kim, S.

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Koo, S.

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Kuipers, L.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Kumar, M. S.

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lan, S.

Lee, B.

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

Leon, I. D.

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Li, X.

Lim, H.

Lin, X.

Lin, X. S.

Liu, L.

Liu, X.

Lu, H.

Mao, D.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
[CrossRef]

Mei, X.

Nelson, R. L.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Noual, A.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

Oosten, D. V.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Park, I.

Park, J.

Park, N.

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

Piao, X.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

Qiu, M.

Quidant, R.

Randhawa, S.

Renger, J.

Sheng, Y. L.

Spasenovic, M.

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Tao, J.

Tremblay, G.

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Volkov, V.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, H.

Wang, L.

Wang, T.

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Wen, X.

Wu, L.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Xiao, S. S.

Xu, Y.

Yang, S. Y.

Yi, H.

Yin, C.

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

Yu, S.

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Zhan, Q. W.

Zhang, Q.

Zhong, Z.

Zhou, Z.

Zhu, J.

Zhu, J. H.

Zhu, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009).
[CrossRef] [PubMed]

Nano Lett. (3)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005).
[CrossRef] [PubMed]

D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010).
[CrossRef]

Nat. Photon. (2)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009).
[CrossRef]

I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009).
[CrossRef]

Opt. Commun. (1)

H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011).
[CrossRef]

Opt. Express (14)

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011).
[CrossRef] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011).
[CrossRef] [PubMed]

M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of surface plasmon polariton waves,” Opt. Express 18, 8800–8805 (2010).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010).
[CrossRef] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009).
[CrossRef]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736(2009).
[CrossRef] [PubMed]

T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009).
[CrossRef]

Z. Zhong, Y. Xu, S. Lan, Q. Dai, and L. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010).
[CrossRef] [PubMed]

S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518–5525 (2004).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006).
[CrossRef]

Phys. Rev. Lett. (3)

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006).
[CrossRef] [PubMed]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the MIM waveguide with a channel drop filter. (b) Transmission spectrum of the drop waveguide. The inset shows the field distribution of | H z | at the transmitted-peak wavelength of 946 nm .

Fig. 2
Fig. 2

Transmitted-peak wavelength versus (a) the length of the cavity when w = 60 nm , (b) the width of the cavity when d = 300 nm , and (c) the refractive index of the cavity when d = 300 nm and w = 60 nm .

Fig. 3
Fig. 3

(a)  Re ( n eff ) versus the incident wavelength and the width of the nanocavity. (b)  Re ( n eff ) versus the incident wavelength and the refractive index of the nanocavity with w = 60 nm .

Fig. 4
Fig. 4

Transmission spectra with different coupling distances. The other parameters are the same as that in Fig. 1.

Fig. 5
Fig. 5

(a) Schematic diagram of the triple-wavelength demultiplexing structure. (b) Transmission spectra of the three drop waveguides.

Fig. 6
Fig. 6

Field distributions of | H z | with incident wavelengths of (a)  1310 nm , (b)  1410 nm , and (c)  1550 nm .

Fig. 7
Fig. 7

(a) Schematic diagram of the channel drop filter with a reflector in the bus waveguide. (b) Transmission spectra with different lengths from the reflection plane to the cavity. (c)  Re ( n eff ) versus the incident wavelength in bus waveguide with w t = 50 nm .

Fig. 8
Fig. 8

(a) Schematic diagram of the triple-wavelength demultiplexing with a reflector in the bus waveguide. (b) Transmission spectra of the three drop waveguides.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = ε ω p 2 ω ( ω + i γ ) ,
λ m = 2 Re ( n eff ) d m ( φ ref 1 + φ ref 2 ) / 2 π ,
ε m k d tanh ( w k d 2 ) + ε d k m = 0 ,
k d , m = β spp 2 ε d , m k 0 2 ,
n eff = β spp / k 0 ,
d a d t = j ω 0 a ( 2 τ w , b + 1 τ w , d + 2 τ i ) a + e j θ 1 2 τ w , b s + 1 ,
s 3 = e j θ 3 2 τ w , d a .
T ( ω ) = | s ˜ 3 s ˜ + 1 | 2 = | e j ( θ 1 θ 3 ) 2 / τ w , d 2 / τ w , b j ( ω ω 0 ) + ( 2 / τ w , b + 1 / τ w , d + 2 / τ i ) | 2 ,
T ( ω ) = 4 9 · ( 1 / τ w , d ) 2 [ 2 ( ω ω 0 ) / 3 ] 2 + [ 1 / τ w , d + 4 / ( 3 τ i ) ] 2 .
T ( ω ) = | e j ( θ 1 θ 3 ) 2 / τ w , d 2 / τ w , b ( 1 + e j φ ) j ( ω ω 0 ) + [ 2 / τ w , b ( 1 + e j φ ) + 1 / τ w , d + 2 / τ i ] | 2 ,
φ = 4 π Re ( n eff ) l λ + σ .

Metrics