Abstract

We propose a coupling-induced intensity-sensing mechanism based on a microring resonator. Different from the conventional intensity sensor, the resonator is working under the analyte-induced variable coupling. The coupling coefficients are highly sensitive to changes of the analyte, thus leading to significant analyte-dependent output intensity. This advanced sensing mechanism is proved with a detection limit of 1.23×107, predicted based on the coupled-mode theory. By introducing a phase bias in the Mach–Zehnder interferometer, the detection limit may be enhanced further to 4×108, which is demonstrated to be up to 1 order of magnitude more sensitive than that provided by comparable conventional sensors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on silicon chip,” Nat. Photon. 1, 65–71 (2007).
    [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
    [CrossRef]
  4. C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  5. Q. Xu, D. Fatal, and R. G. Beausoleil, “Silicon microring resonators with 1.5 μm,” Opt. Express 16, 4309–4315 (2008).
    [CrossRef] [PubMed]
  6. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef] [PubMed]
  7. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
    [CrossRef] [PubMed]
  8. Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–106 (2008).
    [CrossRef]
  9. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18, 2967–2972 (2010).
    [CrossRef] [PubMed]
  10. H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
    [CrossRef]
  11. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
    [CrossRef]
  12. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363(2007).
    [CrossRef] [PubMed]
  13. S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Phase engineering for ring enhanced Mach–Zehnder interferometers,” Opt. Express 13, 4580–4588 (2005).
    [CrossRef] [PubMed]
  14. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [CrossRef] [PubMed]
  15. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach–Zehnder interferometers,” Opt. Lett. 32, 781–783(2007).
    [CrossRef] [PubMed]
  16. M. E. Solmaz, Y. Zhou, and C. K. Madsen, “Modeling asymmetric resonances using an optical filter approach,” J. Lightwave Technol. 28, 2951–2955 (2010).
    [CrossRef]
  17. F. Dell’Olio, and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993(2007).
    [CrossRef] [PubMed]

2010 (3)

2009 (1)

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

2008 (3)

2007 (6)

2006 (1)

2005 (1)

2004 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Almeida, V. R.

Baets, R.

Bartolozzi, I.

Beausoleil, R. G.

Bienstman, P.

Chao, C.-Y.

Cheben, P.

Chen, L.

Chen, Y.

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–106 (2008).
[CrossRef]

Chin, M. K.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Citrin, D. S.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18, 2967–2972 (2010).
[CrossRef] [PubMed]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

Darmawan, S.

Delâge, A.

Dell’Olio, F.

Densmore, A.

Fatal, D.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
[CrossRef]

Guo, L. J.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Janz, S.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Landobasa, Y. M.

Lapointe, J.

Lee, M.-C. M.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
[CrossRef]

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Lopinski, G.

Madsen, C. K.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
[CrossRef]

McKinnon, R.

Mischki, T.

Panepucci, R. R.

Passaro, V. M. N.

Poon, A. W.

Post, E.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
[CrossRef]

Schacht, E.

Schmid, J. H.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on silicon chip,” Nat. Photon. 1, 65–71 (2007).
[CrossRef]

Sherwood-Droz, N.

Solmaz, M. E.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on silicon chip,” Nat. Photon. 1, 65–71 (2007).
[CrossRef]

Vos, K. D.

Waldron, P.

Wu, M. C.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on silicon chip,” Nat. Photon. 1, 65–71 (2007).
[CrossRef]

Xia, Z.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–106 (2008).
[CrossRef]

Xu, D.-X.

Xu, Q.

Yao, J.

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
[CrossRef]

Yi, H.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18, 2967–2972 (2010).
[CrossRef] [PubMed]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

Zhou, L.

Zhou, Y.

Zhou, Z.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18, 2967–2972 (2010).
[CrossRef] [PubMed]

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–106 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112(2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–106 (2008).
[CrossRef]

IEEE J. Select. Top. Quantum. Electron. (1)

J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Select. Top. Quantum. Electron. 13, 202–208(2007).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photon. (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on silicon chip,” Nat. Photon. 1, 65–71 (2007).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configurations of MRR-based sensors: (a) basic MRR and (b) MZI-coupled MRR.

Fig. 2
Fig. 2

Resonant output intensity I 0 versus coupling coefficient κ at resonance wavelength λ 0 , where a = 0.95 .

Fig. 3
Fig. 3

MR-assisted MZI-coupled MRR: (a) SMR coupled with one waveguide (Type I) and (b) SMR coupled with dual waveguides (Type II). The coupling region is marked with a dashed square.

Fig. 4
Fig. 4

Coupling coefficient κ as a function of the effective index n eff with r 1 = 0.99 and a 1 = 0.999 .

Fig. 5
Fig. 5

Resonance output intensity I 0 as a function of the effective index n eff for the Type I and Type II sensors.

Fig. 6
Fig. 6

Effect of the phase bias Δ ϕ = 0.5 π on (a) the coupling co efficient κ and (b) intensity I 0 . The solid curve represents the Type I sensor, and the dashed curve represents the Type II sensor.

Fig. 7
Fig. 7

Comparison of the conventional intensity MRR sensor and the coupling-induced intensity sensors.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I = | r a exp ( i δ ) 1 r a exp ( i δ ) | 2 ,
I 0 = | r a 1 r a | 2 .
S = d I 0 d n eff ,
S = d I 0 d κ d κ d n eff .
κ = κ c 2 ( 1 κ c 2 ) [ | t b | 2 + | t r | 2 2 | t b t r | cos ( ϕ b ϕ r ) ] ,
t r = r 1 a 1 exp ( i θ ) 1 a 1 r 1 exp ( i θ ) ,
θ = 2 π n eff L λ 0 .
t r = a 1 κ 1 2 exp ( i θ / 2 ) 1 a 1 r 1 2 exp ( i θ ) ,
ϕ b ϕ r = ϕ ring + 2 π n ,
δ n = δ I S = d n eff d I 0 δ I ,
ϕ b ϕ r = ϕ ring + 2 π n + Δ ϕ ,

Metrics