Abstract

We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (14251630nm) along V-grooves cut in a gold film. The main CPP characteristics (mode index, width, and propagation length) are determined directly from the experimental near-field images and compared to theoretical results obtained using an analytic description of CPP modes supported by (infinitely deep) V-grooves and finite-element simulations implemented in COMSOL.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
    [CrossRef]
  3. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
    [CrossRef]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
    [CrossRef] [PubMed]
  5. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
    [CrossRef]
  6. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
    [CrossRef] [PubMed]
  7. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
    [CrossRef] [PubMed]
  8. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  9. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
    [CrossRef]
  10. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009).
    [CrossRef] [PubMed]
  11. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
    [CrossRef]
  12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  13. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  14. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  15. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325(2004).
    [CrossRef]
  16. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
    [CrossRef] [PubMed]
  17. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
    [CrossRef]
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  20. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
    [CrossRef] [PubMed]
  21. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
    [CrossRef] [PubMed]
  22. G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449(2006).
    [CrossRef] [PubMed]
  25. I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15, 16596–16603 (2007).
    [CrossRef] [PubMed]
  26. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
    [CrossRef] [PubMed]
  27. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
    [CrossRef] [PubMed]
  28. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34, 2039–2041 (2009).
    [CrossRef] [PubMed]
  29. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
    [CrossRef] [PubMed]
  30. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1991).
  31. I. P. Radko, I. S. Bozhevolnyi, and N. Gregersen, “Transfer function and near-field detection of evanescent waves,” Appl. Opt. 45, 4054–4061 (2006).
    [CrossRef] [PubMed]

2009 (3)

2008 (5)

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

2007 (4)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15, 16596–16603 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

2006 (5)

2005 (5)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef] [PubMed]

2004 (2)

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325(2004).
[CrossRef]

2003 (1)

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

2002 (1)

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

1998 (1)

1997 (1)

1974 (1)

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Bartal, G.

Bolger, P.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Boreman, G.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Bozhevolnyi, I. S.

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34, 2039–2041 (2009).
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449(2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

Choi, H.

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

Derex, A.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Economou, E. N.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1991).

Gramotnev, D. K.

Gregersen, N.

Hech, B.

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Hohenau, A.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Jung, J.

Kim, H.

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Kobayashi, T.

Krasavin, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Kren, J. R.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Krenn, J. R.

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Kurzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lee, B.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

Lee, I.

Leitner, A.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Markey, L.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Martin-Moreno, L.

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

Monacelli, B.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Moreno, E.

Morimoto, A.

Nam, S.

Nerkararyan, K. V.

Nerkararyan, Kh. V.

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Ngai, K. L.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1991).

Park, J.

Pfeiffer, C. A.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Pile, D. F. P.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Puscasu, I.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Quinten, M.

Radko, I. P.

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449(2006).
[CrossRef] [PubMed]

Schaich, W. L.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Takahara, J.

Taki, H.

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Yamagishi, S.

Zayats, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

Zhang, X.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325(2004).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Bend loss for channel plasmon polaritons,” Appl. Phys. Lett. 89, 143108 (2006).
[CrossRef]

Nano Lett. (4)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884(2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic near-field scanning probe with high transmission,” Nano Lett. 8, 3041–3045 (2008).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7, 2341–2345 (2007).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Nature Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Phys. 3, 807–812 (2007).
[CrossRef]

Opt. Commun. (1)

N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253, 118–124 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. B (5)

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Derex, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431(2008).
[CrossRef]

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

G. Schider, J. R. Kren, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100, 203002 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–547 (2005).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons (Springer, 1988).

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement. (a) SEM image of V-groove entrance showing typical groove profile (d and θ are groove depth and angle, respectively). (b) Schematic layout of the experimental setup. (1) TE-polarized radiation (electric field is parallel to sample surface plane) from tunable laser ( 1425 1630 nm ); (2) in-coupling tapered-lensed polarization-maintaining single-mode fiber; (3) sample: gold film containing several straight V-grooves; (4) microscope objective of 20 × magnification; (5) mirror; (6) IR camera; (7) SNOM operated in collection mode; (8) InGaAs photoreceiver; (9) three- dimensional X, Y, Z stage; (10),(11) two-dimensional X, Y stages. (c) Microscope image of a coupling arrangement superimposed with far-field image taken at excitation wavelength λ 1600 nm with IR camera, showing the track of CPP propagation and a bright spot at the V-groove termination. (d) Microscope image of near-field optical probe used in the experiment.

Fig. 2
Fig. 2

Experimental results. Pseudocolor (a), (d) topographical, and (b)–(c), (e–h) near-field optical images of different sizes; (a–c)  36.8 μm × 3.5 μm , (d–h)  55 μm × 3.5 μm . SNOM images recorded at different wavelengths with shear-force feedback, (b)  1425 nm , (c)  1475 nm , (e)  1500 nm , (f)  1560 nm , (g)  1590 nm , (h)  1630 nm . (i) Cross sections of the topographical (asterisks) and near-field optical (open circles) images of (d), (h) taken (along 1 line) along propagation direction.

Fig. 3
Fig. 3

CPP propagation length estimation. (a) Cross sections of the near-field optical images in Figs. 2b, 2h (filled and open circles, respectively) averaged along 5 lines along the propagation direction; the exponential dependences fitted by the least-squares method to the signal dependence along the propagation direction are included. (b) CPP dispersion: the CPP propagation length as a function of light wavelength; filled circles represent the experimental data, with calculated theoretical curves in different colors. Error bars are estimated from the CPP propagation length maximum variations with the averaging windows at different positions along the propagation direction. Insets (time-averaged electric field distributions) represent the modal structure of the fundamental CPP modes at different wavelengths: (c) CPP () mode for an infinitely deep groove at 1425 nm (computed with EI method); the CPP mode for increasing wavelength of (d) 1425, (e) 1480, and (f)  1630 nm (computed with FEM method for a truncated groove of depth 1.7 μm ). Inset size is 2 μm × 3 μm .

Fig. 4
Fig. 4

(a) Cross sections of the topographical (asterisks) and corresponding high-resolution near-field optical (filled circles) images (in left-hand insets) averaged along 10 lines perpendicular to the propagation direction. Schematic of the V-groove/SNOM probe configuration under consideration is shown in right-hand inset. (b) Optical signal recorded inside the groove, presented as a function of groove depth, along with the exponential fitting curve.

Tables (1)

Tables Icon

Table 1 Experimental and Numerically Calculated CPP Mode Characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( y ) exp ( α h ) 2 I 0 exp ( 2 r topo / d pen ) ,

Metrics