Abstract

A type of electromagnetic concentrator with radial and tangential constitutive parameters as constants is proposed. Only the z component of the constitutive tensor is spatially variant, and all the constitutive parameters are nonsingular and positive, which makes it possible to construct it with two-dimensional (2D) metamaterials. The effects of loss and perturbations of parameters on the performance of the concentrator are also investigated. Finally, a simplified concentrator suitable for the case that is not sensitive to the omnidirectional scattering field is proposed. This study provides a feasible method for the fabrication of a 2D electromagnetic concentrator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  3. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  4. W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
    [CrossRef]
  5. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
    [CrossRef]
  6. C. W. Qiu, T. C. Han, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
    [CrossRef]
  7. C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16, 19366–19374 (2008).
    [CrossRef]
  8. C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
    [CrossRef]
  9. B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009).
    [CrossRef]
  10. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
    [CrossRef] [PubMed]
  11. Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
    [CrossRef]
  12. J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  13. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
    [CrossRef] [PubMed]
  14. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [CrossRef] [PubMed]
  15. T. C. Han, C. W. Qiu, and X. H. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35, 2642–2644 (2010).
    [CrossRef] [PubMed]
  16. P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
    [CrossRef]
  17. A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008).
    [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [CrossRef] [PubMed]
  19. T. R. Zhai, Y. Zhou, J. Zhou, and D. H. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17, 17206–17213 (2009).
    [CrossRef] [PubMed]
  20. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807–7817 (2009).
    [CrossRef] [PubMed]
  21. K. Zhang, Q. Wu, F. Y. Meng, and L. W. Li, “Arbitrary waveguide connector based on embedded optical transformation,” Opt. Express 18, 17273–17279 (2010).
    [CrossRef] [PubMed]
  22. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17, 19656–19661 (2009).
    [CrossRef] [PubMed]
  23. W. Wang, L. Lin, J. X. Ma, C. T. Wang, J. H. Cui, C. L. Du, and X. G. Luo, “Electromagnetic concentrators with reduced material parameters based on coordinate transformation,” Opt. Express 16, 11431–11437 (2008).
    [CrossRef] [PubMed]
  24. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
    [CrossRef]
  25. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
    [CrossRef]
  26. Y. Huang, Y. J. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
    [CrossRef] [PubMed]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  28. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [CrossRef] [PubMed]
  29. R. L. Chern and X. X. Liu, “Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres,” J. Opt. Soc. Am. B 27, 488–497 (2010).
    [CrossRef]
  30. V. Yannopapas and E. Paspalakis, “Backward-propagating slow light in Mie resonance-based metamaterials,” J. Opt. 12, 104017(2010).
    [CrossRef]
  31. F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
    [CrossRef]

2010 (5)

2009 (12)

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807–7817 (2009).
[CrossRef] [PubMed]

T. R. Zhai, Y. Zhou, J. Zhou, and D. H. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17, 17206–17213 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17, 19656–19661 (2009).
[CrossRef] [PubMed]

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009).
[CrossRef]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

2008 (8)

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[CrossRef]

W. Wang, L. Lin, J. X. Ma, C. T. Wang, J. H. Cui, C. L. Du, and X. G. Luo, “Electromagnetic concentrators with reduced material parameters based on coordinate transformation,” Opt. Express 16, 11431–11437 (2008).
[CrossRef] [PubMed]

C. Li, K. Yao, and F. Li, “Two-dimensional electromagnetic cloaks with non-conformal inner and outer boundaries,” Opt. Express 16, 19366–19374 (2008).
[CrossRef]

2007 (3)

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Huang, Y. J. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Alitalo, P.

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008).
[CrossRef] [PubMed]

Bongard, F.

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Chan, C. T.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Chen, H. S.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Cheng, Q.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Chern, R. L.

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Cui, J. H.

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Cummer, S. A.

B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Du, C. L.

Engheta, N.

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008).
[CrossRef] [PubMed]

Feng, Y. J.

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

Y. Huang, Y. J. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef] [PubMed]

Han, T. C.

T. C. Han, C. W. Qiu, and X. H. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35, 2642–2644 (2010).
[CrossRef] [PubMed]

C. W. Qiu, T. C. Han, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

Hu, L.

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

Huang, M.

Huang, Y.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

Jiang, T.

Jiang, W. X.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Kang, L.

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

Kong, J. A.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Kwon, D. H.

Lai, Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Li, C.

Li, F.

Li, J. S.

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Li, L. W.

K. Zhang, Q. Wu, F. Y. Meng, and L. W. Li, “Arbitrary waveguide connector based on embedded optical transformation,” Opt. Express 18, 17273–17279 (2010).
[CrossRef] [PubMed]

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Lin, L.

Lippens, D.

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

Liu, D. H.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

Liu, R. P.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Liu, X. X.

Luo, X. G.

Ma, H.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Ma, J. X.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Meng, F. Y.

K. Zhang, Q. Wu, F. Y. Meng, and L. W. Li, “Arbitrary waveguide connector based on embedded optical transformation,” Opt. Express 18, 17273–17279 (2010).
[CrossRef] [PubMed]

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Milton, G. W.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Mosig, J.

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

Onofrei, D.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Paspalakis, E.

V. Yannopapas and E. Paspalakis, “Backward-propagating slow light in Mie resonance-based metamaterials,” J. Opt. 12, 104017(2010).
[CrossRef]

Pendry, J. B.

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Peng, J. H.

Popa, B. I.

B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009).
[CrossRef]

Qiu, C. W.

C. W. Qiu, T. C. Han, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

T. C. Han, C. W. Qiu, and X. H. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35, 2642–2644 (2010).
[CrossRef] [PubMed]

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

Qiu, M.

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[CrossRef]

Qu, S. B.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Tang, X. H.

C. W. Qiu, T. C. Han, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

T. C. Han, C. W. Qiu, and X. H. Tang, “Distributed external cloak without embedded antiobjects,” Opt. Lett. 35, 2642–2644 (2010).
[CrossRef] [PubMed]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Tretyakov, S.

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

Vasquez, F. G.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

Wang, C. T.

Wang, J. F.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Wang, W.

Werner, D. H.

Wu, B. I.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Wu, Q.

K. Zhang, Q. Wu, F. Y. Meng, and L. W. Li, “Arbitrary waveguide connector based on embedded optical transformation,” Opt. Express 18, 17273–17279 (2010).
[CrossRef] [PubMed]

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Xiao, Z.

Xu, X. F.

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

Xu, Z.

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

Yan, M.

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[CrossRef]

Yan, W.

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[CrossRef]

Yang, C. F.

Yang, J. J.

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Yannopapas, V.

V. Yannopapas and E. Paspalakis, “Backward-propagating slow light in Mie resonance-based metamaterials,” J. Opt. 12, 104017(2010).
[CrossRef]

Yao, K.

Zhai, T. R.

Zhang, B. L.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zhang, F. L.

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

Zhang, K.

K. Zhang, Q. Wu, F. Y. Meng, and L. W. Li, “Arbitrary waveguide connector based on embedded optical transformation,” Opt. Express 18, 17273–17279 (2010).
[CrossRef] [PubMed]

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Zhang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Zhao, Q.

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

Zhou, J.

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

T. R. Zhai, Y. Zhou, J. Zhou, and D. H. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17, 17206–17213 (2009).
[CrossRef] [PubMed]

Zhou, Y.

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Zurcher, J. F.

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[CrossRef]

H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009).
[CrossRef]

C. W. Qiu, T. C. Han, and X. H. Tang, “The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication,” Appl. Phys. Lett. 97, 124104 (2010).
[CrossRef]

P. Alitalo, F. Bongard, J. F. Zurcher, J. Mosig, and S. Tretyakov, “Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94, 014103 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. P. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

J. Opt. (1)

V. Yannopapas and E. Paspalakis, “Backward-propagating slow light in Mie resonance-based metamaterials,” J. Opt. 12, 104017(2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Photon. Nanostr. Fundam. Appl. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95(2008).
[CrossRef]

Phys. Rev. A (1)

B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009).
[CrossRef]

Phys. Rev. B (1)

F. L. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, “Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial,” Phys. Rev. B 80, 195119(2009).
[CrossRef]

Phys. Rev. E (1)

C. W. Qiu, L. Hu, X. F. Xu, and Y. J. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009).
[CrossRef]

Phys. Rev. Lett. (7)

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett. 103, 073901 (2009).
[CrossRef] [PubMed]

J. S. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901(2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

Science (3)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369(2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, and J. B. Pendry, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the cylindrical EM concentrator.

Fig. 2
Fig. 2

Constitutive parameters for the circular region of the concentrator.

Fig. 3
Fig. 3

(a) Electric field distribution of the concentrator. (b) Normalized power flow distribution of the concentrator.

Fig. 4
Fig. 4

Electric field and normalized power flow distributions of concentrator with different loss tangents, (a)  loss tangent = 0.001 , (b)  loss tangent = 0.01 , and (c)  loss tangent = 0.1 . (d) Corresponding normalized power flow distribution of (a). (e) Corresponding normalized power flow distribution of (b). (f) Corresponding normalized power flow distribution of (c).

Fig. 5
Fig. 5

Effects of different perturbations on the performance of the concentrator when δ 2 = 0.9 . (a) Electric field distribution of the concentrator with the transverse parameters invariant ( δ 1 = 1 ). (b) Electric field distribution of the concentrator with the impedance invariant ( δ 1 = 0.9 ). (c) Electric field distribution of the concentrator with the refraction index invariant ( δ 1 = 1 / 0.9 ). (d) Corresponding power flow distribution of (a). (e) Corresponding power flow distribution of (b). (f) Corresponding power flow distribution of (c).

Fig. 6
Fig. 6

Effects of different perturbations on the performance of the concentrator when δ 2 = 1.1 . (a) Electric field distribution of the concentrator with the transverse parameters invariant ( δ 1 = 1 ). (b) Electric field distribution of the concentrator with the impedance invariant ( δ 1 = 1.1 ). (c) Electric field distribution of the concentrator with the refraction index invariant ( δ 1 = 1 / 1.1 ). (d) Corresponding power flow distribution of (a). (e) Corresponding power flow distribution of (b). (f) Corresponding power flow distribution of (c).

Fig. 7
Fig. 7

(a) Electric field distribution of the simplified concentrator. (b) Normalized power flow distribution of the simplified concentrator.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ε r = μ r = f ( r ) r f ( r ) ,
ε φ = μ φ = r f ( r ) f ( r ) ,
ε z = μ z = f ( r ) f ( r ) r ,
f cor ( r ) = R 2 R 1 r .
ε cor r = ε cor φ = μ cor r = μ cor φ = 1 ,
ε cor z = μ cor z = R 2 2 R 1 2 ,
ε cir φ = μ cir φ = r f cir ( r ) f cir ( r ) = m 0 .
f cir ( r ) = m 1 r m 0 ,
{ f cir ( R 3 ) = R 3 f cir ( R 1 ) = R 2 .
ε cir φ = μ cir φ = 1 ε cir r = 1 μ cir r = m 0 ,
ε cir z = μ cir z = m 0 ( r R 3 ) 2 ( m 0 1 ) ,
m 0 = log R 3 R 1 R 3 R 2 < 1.
ε φ = μ φ = 1 / ε r = 1 / μ r = log a b δ 0 b ,
ε z = μ z = ( r log a b δ 0 b r b log a b δ 0 a ) 2 log a b δ 0 b ,
δ 0 = a ( b / a ) n , n > 0.
ε φ = μ φ = 1 / ε r = 1 / μ r = n + 1 ,
ε z = μ z = ( n + 1 ) ( r b ) 2 n .
[ 1 r μ z r ( r ε φ r ) + 1 r μ z φ ( 1 r ε r φ ) + ( 2 z 2 + ω 2 ε 0 μ 0 ) ] φ ( r ) = 0.
ε cor r = ε cor φ = ε cor z = μ cor r = μ cor φ = μ cor z = R 2 R 1 .
ε cir r = μ cir r = R 2 R 1 m 0 ,
ε cir φ = μ cir φ = m 0 R 2 R 1 ,
ε cir z = μ cir z = m 0 R 1 R 2 ( r R 3 ) 2 ( m 0 1 ) .

Metrics