Abstract

An analysis showing that phase noise in a master diode laser is converted to amplitude noise in an injection-locked Ti:sapphire power amplifier was recently published [“Intensity noise of an injection-locked Ti:sapphire laser: analysis of the phase-noise-to-amplitude-noise conversion,” J. Opt. Soc. Am. B , 23, 1276–1286 (2006)]. As this analysis might discourage the broad implementation of injection locking, we report amplitude noise and laser linewidth measurements in such a system and note that these lasers have sufficiently low noise to be useful in a wide range of experiments in atomic, molecular, and optical physics. A low-power diode laser is amplified to 1.6W at 846nm. Amplitude noise is measured using a high-speed photodiode. Frequency noise is measured relative to a low-noise commercial Ti:sapphire laser using an offset lock and heterodyne technique. Under optimal conditions, the relative rms amplitude noise is 1%. The linewidth of the injection-locked laser is 300kHz. As others in this field have shown, the amplitude and frequency noise characteristics depend critically on the lock circuit characteristics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Farinas, E. K. Gustafson, and R. L. Byer, “Frequency and intensity noise in an injection-locked solid-state laser,” J. Opt. Soc. Am. B 12, 328–334 (1995).
    [CrossRef]
  2. D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
    [CrossRef]
  3. E. A. Cummings, M. S. Hicken, and S. D. Bergeson, “Demonstration of a 1 W injection-locked continuous-wave titanium:sapphire laser,” Appl. Opt. 41, 7583–7587 (2002).
    [CrossRef]
  4. U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
    [CrossRef]
  5. Y. H. Cha, Y. W. Lee, K. H. Ko, E. C. Jung, G. Lim, J. Kim, T. S. Kim, and D. Y. Jeong, “Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser,” Appl. Opt. 44, 7810–7813 (2005).
    [CrossRef] [PubMed]
  6. J. Belfi, I. Galli, G. Giusfredi, and F. Marin, “Intensity noise of an injection-locked Ti:sapphire laser: analysis of the phase-noise-to-amplitude-noise conversion,” J. Opt. Soc. Am. B 23, 1276–1286 (2006).
    [CrossRef]
  7. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
    [CrossRef] [PubMed]
  8. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5 W756 nm injection-locked Ti:sapphire laser,” Opt. Express 16, 4866–4871(2008).
    [CrossRef] [PubMed]
  9. S. Choiw, S. Herrmann, H. Müller, and S. Chu, “6 W, 1 kHzlinewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246–5250 (2009).
    [CrossRef]
  10. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
    [CrossRef]

2009

2008

2006

J. Belfi, I. Galli, G. Giusfredi, and F. Marin, “Intensity noise of an injection-locked Ti:sapphire laser: analysis of the phase-noise-to-amplitude-noise conversion,” J. Opt. Soc. Am. B 23, 1276–1286 (2006).
[CrossRef]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

2005

2003

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

2002

2000

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

1999

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

1995

Barber, Z. W.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Belfi, J.

Bergeson, S. D.

Bergquist, J. C.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Bize, S.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Byer, R. L.

Cha, Y. H.

Choiw, S.

Chu, S.

Cummings, E. A.

Diddams, S. A.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Drullinger, R. E.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Farinas, A. D.

Galli, I.

Giusfredi, G.

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Gustafson, E. K.

Hamilton, M. W.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Han, J. M.

Herrmann, S.

Hicken, M. S.

Hollberg, L.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Hollitt, C.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Hoyt, C. W.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Itano, W. M.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Jeong, D. Y.

Jung, E. C.

Kim, J.

Kim, T. S.

Ko, K. H.

Lee, Y. W.

Lim, G.

Marin, F.

Mudge, D.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Müller, H.

Munch, J.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Oates, C. W.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Ottaway, D. J.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Park, H. M.

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Taichenachev, A. V.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Tanaka, U.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Tanner, C. E.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Veitch, P. J.

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

Weidemüller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Wineland, D. J.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

Yudin, V. I.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Zielonkowski, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. J. Ottaway, P. J. Veitch, C. Hollitt, D. Mudge, M. W. Hamilton, and J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000).
[CrossRef]

IEEE Trans. Instrum. Meas.

U. Tanaka, J. C. Bergquist, S. Bize, S. A. Diddams, R. E. Drullinger, L. Hollberg, W. M. Itano, C. E. Tanner, and D. J. Wineland, “Optical frequency standards based on the Hg-199(+) ion,” IEEE Trans. Instrum. Meas. 52, 245–249 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. Lett.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett. 96, 083002 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Amplitude spectrum showing amplitude noise in the injection-locked laser system under different locking conditions. Black curve, 80 mW injection power; medium gray curve, 15 mW injection power; light gray curve, noise floor of our high-speed detection system. As the injection power decreases, the noise above 250 kHz increases. In this frequency range, our feedback system displays a phase shift, limiting our ability to eliminate noise at high frequencies. The amplitude noise of the pump laser and the commercial Ti:sapphire laser used in this experiment are both below the measurement noise floor. The noise floor is relatively high due to the 8   bit analog-to-digital (A/D) resolution in the high-speed data acquisition system. A Hanning window is used in the fast Fourier transform (FFT) analysis. The amplitude spectrum is smoothed using a moving average to produce an effective measurement bandwidth of 15 kHz . The 45 mV signal used in this analysis corresponds to 1.4 W of laser power. Inset: 50 μs of data showing the amplitude noise on the injection-locked laser. Black curve, 80 mW injection power; medium gray curve, 15 mW injection power. The relative rms noise of this data is 1.0% and 1.7%, respectively.

Fig. 2
Fig. 2

Amplitude spectrum of the injection-locked laser system at low frequencies for the same conditions as plotted in Fig. 1. Black curve, 80 mW injection power; medium gray curve, 15 mW injection power; light gray curve, noise floor of our low-speed detection system. The noise floor is limited by the 24   bit A/D resolution of the low-speed data acquisition system. The amplitude noise of the commercial Ti:sapphire laser is plotted as black dots in this figure. Above 50 kHz , the noise in that laser approaches the measurement noise floor. A Hanning window is used in the FFT analysis. The amplitude spectrum is smoothed using a moving average to produce an effective measurement bandwidth of 6.25 Hz . The 45 mV signal used in this analysis corresponds to 1.4 W of laser power. Inset: 30 s of data showing the amplitude noise on the injection-locked laser. Black curve, 80 mW injection power; medium gray curve, 15 mW injection power. The rms noise of this data (measurement bandwidth 0.03 Hz to 100 kHz ) is 0.26%.

Fig. 3
Fig. 3

Beat note signal of the master laser with the M-squared laser (top panel) and the injection-locked laser with the M-squared laser (bottom panel). The thin black lines are experimental data and the thicker gray lines are Lorentzian (top panel) and Gaussian (bottom panel) fits of the data. The amplification process increases the laser linewidth. Advanced techniques can be used to reduce the frequency noise to 1 kHz [9].

Metrics