Abstract

Numerical simulations are used to investigate the guiding properties of large mode area silicon microstructured fibers. Modal analysis of the isolated high refractive index core and cladding rod inclusions will be applied to show that the guidance mechanism of the composite fiber can be well described via a hybrid of the total internal reflection and antiresonant reflecting optical waveguide models. It will be shown that by selectively filling the cladding holes with silicon, which has been modified to have a slightly raised index, the fiber can be designed to operate in an effectively single-mode regime over an extended wavelength range.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [CrossRef]
  2. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33, 596–598 (2008).
    [CrossRef]
  3. M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotech. 15, S622–S627(2004).
    [CrossRef]
  4. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
    [CrossRef]
  5. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [CrossRef]
  6. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
    [CrossRef]
  7. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [CrossRef]
  8. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 14, 2994–2999 (2006).
    [CrossRef]
  9. N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).
  10. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16, 4337–4346 (2008).
    [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  12. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852(2003).
    [CrossRef]
  13. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [CrossRef]
  14. J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express 16, 18631–18645 (2008).
    [CrossRef]
  15. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  16. G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
    [CrossRef]
  17. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
    [CrossRef]
  18. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19, 1713–1727 (2011).
    [CrossRef]
  19. C.-P. Yu and J.-H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17, 8729–8734 (2009).
    [CrossRef]

2011 (1)

2010 (1)

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

2009 (2)

2008 (4)

2006 (2)

2004 (2)

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotech. 15, S622–S627(2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

2003 (2)

1998 (1)

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Amezcua, R.

Badding, J. V.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Ballato, J.

Baril, N. F.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Broderick, N. G. R.

Cheben, P.

Cocorullo, G.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

Corte, F. D.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

Daw, M.

De Rosa, R.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

de Sterke, C. M.

Delâge, A.

Densmore, A.

Desfarges-Berthelemot, A.

Dunn, S. C.

Eggleton, B. J.

Ellison, M.

Fathpour, S.

Février, S.

Flanagan, J. C.

Foy, P.

Hasegawa, T.

Hawkins, T.

Hayes, J. R.

He, R.

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Healy, N.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Jalali, B.

Janz, S.

Kermène, V.

Kokuoz, B.

Koshiba, M.

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lavoute, L.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Liou, J.-H.

Lipson, M.

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotech. 15, S622–S627(2004).
[CrossRef]

Litchinitser, N. M.

Lopinski, G.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

McMillen, C.

McPhedran, R. C.

Mischki, T.

Murao, T.

Peacock, A. C.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Petrovich, M. N.

Poletti, F.

Powers, D. R.

Rao, A. M.

Rendina, I.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

Reppert, J.

Rice, R. R.

Richardson, D. J.

Roy, P.

Rubino, A.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

Saitoh, K.

Sasaoka, E.

Sazio, P. J. A.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Schmid, J. H.

Sharma, S.

Shori, R.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Sparks, J. R.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

Stafsudd, O.

Stolen, R.

Terzini, E.

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

Usner, B.

van Brakel, A.

Waldron, P.

White, T. P.

Xu, D.-X.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yu, C.-P.

Appl. Phys. Lett. (2)

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105(2010).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Cocorullo, F. D. Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002(1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[CrossRef]

Nanotech. (1)

M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotech. 15, S622–S627(2004).
[CrossRef]

Opt. Express (9)

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16, 4337–4346 (2008).
[CrossRef]

J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express 16, 18631–18645 (2008).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[CrossRef]

C.-P. Yu and J.-H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17, 8729–8734 (2009).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon miscrostructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082 (2009).
[CrossRef]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19, 1713–1727 (2011).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852(2003).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[CrossRef]

L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 14, 2994–2999 (2006).
[CrossRef]

Opt. Lett. (1)

Other (2)

N. Healy, J. R. Sparks, R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express, doc. ID 144221 (2011, in press).

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics