Abstract

A large and reversible all-optical tuning effect is demonstrated for liquid crystal (LC) infiltrated InGaAsP photonic crystal membrane nanocavities. The tuning is based on the change in the refractive index of the LC due to the large local heating caused by absorption of laser light by the semiconductor. Compared to opto-thermal tuning based on semiconductor heating alone, the effects with the LC are an order of magnitude larger and can be either redshifting or blueshifting, depending on the spatial distribution of the cavity mode’s polarization direction.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
    [CrossRef]
  2. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
    [CrossRef]
  3. A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
    [CrossRef]
  4. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
    [CrossRef]
  5. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363(2007).
    [CrossRef] [PubMed]
  6. E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004).
    [CrossRef] [PubMed]
  7. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
    [CrossRef]
  8. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
    [CrossRef] [PubMed]
  9. A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
    [CrossRef]
  10. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
    [CrossRef]
  11. S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
    [CrossRef]
  12. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
    [CrossRef] [PubMed]
  13. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
    [CrossRef]
  14. G. Barillaro, S. Merlo, and L. M. Strambini, “Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals,” Opt. Lett. 34, 1912–1914 (2009).
    [CrossRef] [PubMed]
  15. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
    [CrossRef]
  16. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
    [CrossRef]
  17. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31, 1238–1240 (2006).
    [CrossRef] [PubMed]
  18. P. El-Kallassi, R. Ferrini, L. Zuppiroli, N. Le Thomas, R. Houdre, A. Berrier, S. Anand, and A. Talneau, “Optical tuning of planar photonic crystals infiltrated with organic molecules,” J. Opt. Soc. Am. B 24, 2165–2171 (2007).
    [CrossRef]
  19. M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
    [CrossRef]
  20. B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
    [CrossRef] [PubMed]
  21. R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
    [CrossRef]
  22. M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
    [CrossRef]
  23. M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
    [CrossRef]
  24. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
    [CrossRef]
  25. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16, 6515–6527 (2008).
    [CrossRef] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]

2010

2009

G. Barillaro, S. Merlo, and L. M. Strambini, “Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals,” Opt. Lett. 34, 1912–1914 (2009).
[CrossRef] [PubMed]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

2008

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16, 6515–6527 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008).
[CrossRef] [PubMed]

2007

2006

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31, 1238–1240 (2006).
[CrossRef] [PubMed]

2004

E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588–592 (2004).
[CrossRef] [PubMed]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

2003

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

2002

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

2000

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Akahane, Y.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

Anand, S.

Anantathanasarn, S.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Asano, T.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Balet, L.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Barbarin, Y.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Barillaro, G.

Bente, E. A. J. M.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Berrier, A.

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Bog, U.

Bordas, F.

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Camargo, E. A.

Chauvin, N.

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

Chen, B. Q.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Chen, L.

Choi, J. H.

Chong, H. M. H.

Colocci, M.

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

De la Rue, R. M.

de Vries, T.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Du¨ndar, M. A.

B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
[CrossRef] [PubMed]

M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Dunbar, L. A.

Eggleton, B. J.

Eijkemans, T. J.

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

El-Kallassi, P.

Englund, D.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Fan, S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Faraon, A.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Fejer, M. M.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Ferrini, R.

Fiore, A.

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Forchel, A.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Francardi, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Fushman, I.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Gayral, B.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Geluk, E. J.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Gerardino, A.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Gerardot, B. D.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Gosele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Grillet, C.

Gurioli, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Harris, J. S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

He, S. L.

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Houdre, R.

Hu, E. L.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Huo, Y.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Imamoglu, A.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Intonti, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kamp, M.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Karnutsch, C.

Karouta, F.

M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef]

B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
[CrossRef] [PubMed]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Kicken, H. H. J. E.

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Kim, S. H.

Kiraz, A.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Klopf, F.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Krauss, T. F.

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Le Thomas, N.

Lee, M. W.

Lee, S. K.

Lee, Y. H.

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Li, J.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[CrossRef]

Li, L.

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Li, L. H. H.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

Lipson, M.

Luo, J. D.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Martz, J.

McPhedran, R. C.

Merlo, S.

Monat, C.

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Mulot, M.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31, 1238–1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

No¨tzel, R.

M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef]

B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
[CrossRef] [PubMed]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Noda, S.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

O’Faolain, L.

Oei, Y. S.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Pan, J.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Petroff, P.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Petroff, P. M.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Povinelli, M. L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Reese, C.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Regrency, P.

Reithmaier, J. P.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Riboli, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ryckebosch, E. C. I.

Salemink, H. W. M.

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Sandhu, S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Satpati, B.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Scaccabarozzi, L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Schilling, J.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

Schoenfeld, W. V.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Schuller, C.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Seassal, C.

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Sherwood-Droz, N.

Shi, Z. W.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Silov, A. Y.

B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
[CrossRef] [PubMed]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Smalbrugge, B.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Smit, M. K.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Smith, C. J. M.

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Smith, C. L. C.

Stoltz, N.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Strambini, L. M.

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Takano, H.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

Takeda, H.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

Talneau, A.

Timp, R.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

Tomljenovic-Hanic, S.

Trampert, A.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

van der Heijden, R. W.

B. W. Wang, M. A. Du¨ndar, A. Y. Silov, R. No¨tzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Controlling mode degeneracy in a photonic crystal nanocavity with infiltrated liquid crystal,” Opt. Lett. 35, 2603–2605 (2010).
[CrossRef] [PubMed]

M. A. Du¨ndar, E. C. I. Ryckebosch, R. No¨tzel, F. Karouta, L. J. van Ijzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef]

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

van Driel, H. M.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

van Ijzendoorn, L. J.

van Otten, F. W. M.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

van Veldhoven, R. P. J.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Viktorovitch, P.

Vinattieri, A.

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Vuckovic, J.

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

Wang, B. W.

Wang, G. X.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Wehrspohn, R. B.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

Wiersma, D. S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Wild, B.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31, 1238–1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

Wolter, J. H.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Wu, D. K. C.

Wu, S. T.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[CrossRef]

Yamanaka, K.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

Yang, S. M.

Yoshino, K.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

Zabelin, V.

Zani, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

Zhang, L. D.

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

Zuppiroli, L.

Appl. Phys. Lett.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84, 2226–2228 (2004).
[CrossRef]

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, J. Vuckovic, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90, 043102 (2007).
[CrossRef]

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[CrossRef]

S. Vignolini, F. Intonti, L. Balet, M. Zani, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Nonlinear optical tuning of photonic crystal microcavities by near-field probe,” Appl. Phys. Lett. 93, 023124 (2008).
[CrossRef]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95, 173112(2009).
[CrossRef]

M. A. Du¨ndar, H. H. J. E. Kicken, A. Y. Silov, R. No¨tzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95, 181111 (2009).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Appl. Phys.

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[CrossRef]

J. Nanophoton.

M. A. Du¨ndar, F. Bordas, T. J. Eijkemans, N. Chauvin, A. Y. Silov, R. No¨tzel, F. Karouta, A. Fiore, and R. W. van der Heijden, “Lithographic and optical tuning of InGaAsP membrane photonic crystal nanocavities with embedded InAs quantum dots,” J. Nanophoton. 3, 031765 (2009).
[CrossRef]

J. Opt. B

A. Kiraz, C. Reese, B. Gayral, L. D. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, “Cavity-quantum electrodynamics with quantum dots,” J. Opt. B 5, 129–137 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

R. No¨tzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549 (2006).
[CrossRef]

Nat. Mater.

M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102(2002).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) InAs QD’s PL emission and (b) SEM image of a fabricated H1 cavity.

Fig. 2
Fig. 2

(a) Photoluminescence signal from the H1 cavity before the LC infiltration and (b) wavelength dependence on the excitation power of the DX and DY modes.

Fig. 3
Fig. 3

(a) Temperature dependence refractive index change for the LC calculated from the parameters given in [24], (b) the PL signal collected from the H1 cavity after the infiltration at the nematic state, (c) PL data collected from the infiltrated cavity under three different pump-powers, and (d) optothermal tuning of the DX and DY modes.

Fig. 4
Fig. 4

Electric field (E) map of the (a) DX and (b) DY modes (the asymmetric impression exhibited by the modes is caused by the end-point anchoring of the arrows to the grid points). The magnetic field (H) profiles of (c) DX and (d) DY modes. Note that the E-field has an antinode where the H-field has a node, since E × H .

Metrics