Abstract

We report a complete spectroscopic analysis of Nd3+-doped Gd3AlxGa5xO12 garnet crystal (Nd:GAGG), including absorption and emission spectra at low and room temperatures, excitation spectra showing the multisite structure of the host crystal, and temperature dependence of the lifetime of the F324 manifold. We also report the emission cross sections for the transitions from the F324 manifold and a Judd–Ofelt analysis with the calculation of the spontaneous emission probabilities and the radiative branching ratios.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33, 1872–1874 (2008).
    [CrossRef] [PubMed]
  2. M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
    [CrossRef]
  3. M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
    [CrossRef]
  4. L. A. Riseberg and W. C. Holton, “Laser-selective excitation of Nd ions in mixed-crystal systems,” Opt. Commun. 9, 298–299(1973).
    [CrossRef]
  5. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl5−xO12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801(1998).
    [CrossRef]
  6. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
    [CrossRef]
  7. H. Okada, M. Tanaka, H. Kiriyama, Y. Nakai, Y. Ochi, A. Sugiyama, H. Daido, T. Rimura, T. Yanagitani, H. Yagi, and N. Meichin, “Laser ceramic materials for subpicosecond solid-state mixed scandium garnets,” Opt. Lett. 35, 3048–3050(2010).
    [CrossRef] [PubMed]
  8. K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
    [CrossRef]
  9. H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
    [CrossRef]
  10. H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
    [CrossRef]
  11. H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
    [CrossRef]
  12. Y. Kuwano and S. Saito, “Crystal growth and optical properties of Nd:GAGG,” J. Cryst. Growth 92, 17–22 (1988).
    [CrossRef]
  13. A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
    [CrossRef]
  14. Y. Kuwano, “Effective distribution coefficient of neodynium in Nd:Gd3Ga5O12 crystals grown by the Czochralski method,” J. Cryst. Growth 57, 353–361 (1982).
    [CrossRef]
  15. Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
    [CrossRef]
  16. A. A. Kaminskii, Laser Crystals (Springer, 1981).
  17. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930(1982).
    [CrossRef]
  18. E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
    [CrossRef]
  19. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
    [CrossRef]
  20. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.
  21. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  22. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  23. A. A. Kaminskii, Crystalline lasers: Physical Processes and Operating Schemes (CRC, 1996).

2010

2008

2001

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

1999

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

1998

1992

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

1989

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

1988

Y. Kuwano and S. Saito, “Crystal growth and optical properties of Nd:GAGG,” J. Cryst. Growth 92, 17–22 (1988).
[CrossRef]

K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
[CrossRef]

1986

H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
[CrossRef]

1982

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930(1982).
[CrossRef]

Y. Kuwano, “Effective distribution coefficient of neodynium in Nd:Gd3Ga5O12 crystals grown by the Czochralski method,” J. Cryst. Growth 57, 353–361 (1982).
[CrossRef]

1973

L. A. Riseberg and W. C. Holton, “Laser-selective excitation of Nd ions in mixed-crystal systems,” Opt. Commun. 9, 298–299(1973).
[CrossRef]

1968

M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
[CrossRef]

1966

M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Arcangeli, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930(1982).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl5−xO12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801(1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.

Bausa, L. E.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Belletti, A.

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Bettinelli, M.

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Camarillo, E.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Carozzo, V.

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Cavalli, E.

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Cornacchia, F.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Daido, H.

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Dernier, P. D.

M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
[CrossRef]

Di Bartolo, B.

Equall, R. W.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl5−xO12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801(1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.

Fukuda, T.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Garcia Sole, J.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Guandalini, A.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Guyot, Y.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Holton, W. C.

L. A. Riseberg and W. C. Holton, “Laser-selective excitation of Nd ions in mixed-crystal systems,” Opt. Commun. 9, 298–299(1973).
[CrossRef]

Hutcheson, R. L.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl5−xO12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801(1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.

Jayaraman, A.

M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930(1982).
[CrossRef]

Jia, Z.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

Jiang, M. H.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Crystalline lasers: Physical Processes and Operating Schemes (CRC, 1996).

A. A. Kaminskii, Laser Crystals (Springer, 1981).

Kato, Y.

K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
[CrossRef]

Kimura, H.

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
[CrossRef]

Kiriyama, H.

Kuwano, Y.

Y. Kuwano and S. Saito, “Crystal growth and optical properties of Nd:GAGG,” J. Cryst. Growth 92, 17–22 (1988).
[CrossRef]

Y. Kuwano, “Effective distribution coefficient of neodynium in Nd:Gd3Ga5O12 crystals grown by the Czochralski method,” J. Cryst. Growth 57, 353–361 (1982).
[CrossRef]

Luo, H.

Maeda, H.

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
[CrossRef]

Marezio, M.

M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
[CrossRef]

M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
[CrossRef]

Meichin, N.

Moncorge, R.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Monteil, A.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Nakai, Y.

Numazawa, T.

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

Ochi, Y.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Okada, H.

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

Qian, L. J.

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Remeika, J. P.

M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
[CrossRef]

M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
[CrossRef]

Rimura, T.

Riseberg, L. A.

L. A. Riseberg and W. C. Holton, “Laser-selective excitation of Nd ions in mixed-crystal systems,” Opt. Commun. 9, 298–299(1973).
[CrossRef]

Saito, S.

Y. Kuwano and S. Saito, “Crystal growth and optical properties of Nd:GAGG,” J. Cryst. Growth 92, 17–22 (1988).
[CrossRef]

Sato, M.

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
[CrossRef]

Shimamura, K.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

Sugiyama, A.

Tanaka, M.

Tang, D. Y.

Tao, X.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

Tao, X. T.

Toncelli, A.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Tonelli, M.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Vergara, I.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl5−xO12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15, 2794–2801(1998).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.

Wang, J. Y.

Xie, G. Q.

Yagi, H.

Yanagitani, T.

Yoshida, H.

K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
[CrossRef]

Yoshida, K.

K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
[CrossRef]

Yu, H. H.

Zannoni, E.

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

Zhang, H. J.

Acta Crystallogr., Sec. B

M. Marezio, J. P. Remeika, and P. D. Dernier, “Cation distribution in Y3Al5−cGacO12 garnet,” Acta Crystallogr., Sec. B B24, 1670–1674 (1968).
[CrossRef]

Appl. Phys. B

E. Cavalli, E. Zannoni, A. Belletti, V. Carozzo, A. Toncelli, M. Tonelli, and M. Bettinelli, “Spectroscopic analysis and laser parameters of Nd3+ in Ca3Sc2Ge3O12 garnet crystals,” Appl. Phys. B 68, 677–681 (1999).
[CrossRef]

IEEE J. Quantum Electron.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37, 304–313(2001).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930(1982).
[CrossRef]

K. Yoshida, H. Yoshida, and Y. Kato, “Characterization of high average power Nd:GGG slab lasers,” IEEE J. Quantum Electron. 24, 1188–1192 (1988).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Compositionally tuned 0.94 μm lasers: a comparative laser material study and demonstration of 100 mJQ-switched lasing at 0.946 and 0.9441 μm,” IEEE J. Quantum Electron. 37, 1203–1209 (2001).
[CrossRef]

J. Appl. Phys.

Y. Guyot, L. E. Bausa, E. Camarillo, J. Garcia Sole, I. Vergara, A. Monteil, and R. Moncorge, “Infrared fluorescence spectra of Nd3+ sites in gadolinium gallium garnet:Nd and gadolinium gallium garnet:Nd,Cr,” J. Appl. Phys. 72, 5876–5880(1992).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

M. Marezio, J. P. Remeika, and A. Jayaraman, “High-pressure decomposition of synthetic garnets,” J. Chem. Phys. 45, 1821–1824 (1966).
[CrossRef]

J. Cryst. Growth

Y. Kuwano, “Effective distribution coefficient of neodynium in Nd:Gd3Ga5O12 crystals grown by the Czochralski method,” J. Cryst. Growth 57, 353–361 (1982).
[CrossRef]

Y. Kuwano and S. Saito, “Crystal growth and optical properties of Nd:GAGG,” J. Cryst. Growth 92, 17–22 (1988).
[CrossRef]

H. Kimura, H. Maeda, and M. Sato, “Czochralski growth of Gd3(Ga1−xAlx)5O12 single crystals,” J. Cryst. Growth 74, 187–190 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Crystal structure and thermal conductivity of Gd3(Ga1−xAlx)5O12 garnets,” Jpn. J. Appl. Phys. 28, 1644–1647 (1989).
[CrossRef]

H. Kimura, T. Numazawa, M. Sato, and H. Maeda, “Dislocations and thermal conductivity of Gd3+y(Ga0.8Al0.2)5−yO12 garnets,” Jpn. J. Appl. Phys. 28, 1654–1658 (1989).
[CrossRef]

Opt. Commun.

L. A. Riseberg and W. C. Holton, “Laser-selective excitation of Nd ions in mixed-crystal systems,” Opt. Commun. 9, 298–299(1973).
[CrossRef]

Opt. Lett.

Opt. Mater.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32, 1130–1133 (2010).
[CrossRef]

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Other

A. A. Kaminskii, Crystalline lasers: Physical Processes and Operating Schemes (CRC, 1996).

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, “Physics of materials,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics (Optical Society of America, 2000), Vol.  34, pp. 490–493.

A. A. Kaminskii, Laser Crystals (Springer, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

RT absorption spectrum of the Nd:GAGG crystal.

Fig. 2
Fig. 2

10 K absorption spectrum of the Nd:GAGG crystal.

Fig. 3
Fig. 3

10 K emission spectra of the Nd:GAGG obtained after pumping at different wavelengths in the 808 nm region. The different shapes of the three emission curves indicate the presence of different sites for Nd 3 + in the garnet host.

Fig. 4
Fig. 4

Excitation spectra of the Nd:GAGG crystal. The measurements have been taken by observing three different wavelengths, corresponding to the same transition in different sites for Nd 3 + ions.

Fig. 5
Fig. 5

RT emission cross sections for Nd:GAGG calculated by the Fuchtbauer–Landeburg equation for the F 3 2 4 I J 4 transitions ( J = 9 / 2 , 11 / 2 , 13 / 2 ).

Tables (3)

Tables Icon

Table 1 Experimentally Observed Energy Levels of Nd 3 + inside GAGG

Tables Icon

Table 2 Experimental and Calculated Oscillator Strengths (P) and the Judd–Ofelt Parameters of Nd:GAGG for the Transitions from the Ground State ( I 9 2 4 ) to the L J 2 S + 1 Excited Manifolds

Tables Icon

Table 3 Calculated Spontaneous Emission Probabilities (A), Radiative Branching Ratio (β), and Radiative Lifetime ( τ R ) for the Emission from the F 3 2 4 Level of the Nd:GAGG Crystal at RT

Metrics