Abstract

We analyzed a number of optical media, such as GGG, Nd:YAG, Yb:YAG, fused silica, CaF2, Yb:CaF2, and CdMnTe, that have not been used, to our knowledge, in the cryogenic Faraday isolator (FI) before. The temperature dependence of the Verdet constant and thermo-optical constants was experimentally investigated for λ=1.07μm. We calculated the magneto-optical figure-of-merit and assessed the feasibility of using FI media with multikilowatt average laser power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
    [CrossRef]
  2. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
    [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  4. A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
    [CrossRef]
  5. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  6. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
    [CrossRef]
  7. T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).
  8. C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
    [CrossRef]
  9. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
    [CrossRef]
  10. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
    [CrossRef]
  11. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
    [CrossRef]
  12. J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636(1984).
    [CrossRef] [PubMed]
  13. E.Khazanov, ed., Faraday Isolators for High Average Power Lasers, Advances in Solid State Lasers Development and Applications (INTECH, 2010).
  14. T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).
  15. V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
    [CrossRef]
  16. I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
    [CrossRef]
  17. U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).
  18. A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).
  19. G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963).
    [CrossRef]
  20. J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
    [CrossRef]
  21. R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
    [CrossRef]
  22. L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
    [CrossRef]
  23. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  24. www.mt-berlin.com/frames_cryst/crystals_frameset1.htm, “MolTech GmbH.”
  25. J. Vetrovec, “Ultrahigh-average power solid-state laser,” Proc. SPIE 4760, 491–505 (2002).
    [CrossRef]
  26. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
    [CrossRef] [PubMed]
  27. O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
    [CrossRef]
  28. M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
    [CrossRef]
  29. S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
    [CrossRef]
  30. G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
    [CrossRef]
  31. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
    [CrossRef]
  32. W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
    [CrossRef]
  33. F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
    [CrossRef]
  34. F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
    [CrossRef]
  35. N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
    [CrossRef]
  36. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
    [CrossRef] [PubMed]
  37. E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
    [CrossRef]
  38. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).
  39. P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990).
    [CrossRef]
  40. R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
    [CrossRef]
  41. H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992).
    [CrossRef]
  42. Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
    [CrossRef]
  43. Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
    [CrossRef]
  44. L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
    [CrossRef]
  45. M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
    [CrossRef]
  46. T. C. Rich and D. A. Pinnow, “Optical absorption in fused silica and fused quartz at 1.06 μ,” Appl. Opt. 12, 2234–2234 (1973).
    [CrossRef] [PubMed]
  47. Corning, Incorporated, “Calcium fluoride product information sheet,” www.corning.com/specialtymaterials.
  48. International Crystal Laboratories, “Potassium chloride (KCl) optical crystals,” www.internationalcrystal.net/optics_20.htm.
  49. G. L. Bourdet and H. Yu, “Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb:YAG thin disk amplifier,” Appl. Opt. 46, 6033–6041 (2007).
    [CrossRef] [PubMed]
  50. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).
  51. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
    [CrossRef]

2010 (1)

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

2009 (2)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

2008 (2)

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

2007 (5)

W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

G. L. Bourdet and H. Yu, “Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb:YAG thin disk amplifier,” Appl. Opt. 46, 6033–6041 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

2005 (1)

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

2004 (2)

G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

2002 (4)

J. Vetrovec, “Ultrahigh-average power solid-state laser,” Proc. SPIE 4760, 491–505 (2002).
[CrossRef]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

1999 (2)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

1997 (1)

1996 (1)

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

1995 (1)

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

1993 (1)

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

1992 (2)

H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992).
[CrossRef]

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).

1991 (1)

1990 (2)

P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990).
[CrossRef]

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

1987 (1)

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

1984 (2)

V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
[CrossRef]

J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636(1984).
[CrossRef] [PubMed]

1983 (1)

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

1982 (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

1973 (1)

1971 (1)

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

1969 (1)

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

1967 (1)

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

1963 (1)

Aggarwal, R. L.

H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992).
[CrossRef]

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Andreev, N.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Antonov, E. V.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Archer, J. L.

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

Averbakh, V. S.

V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
[CrossRef]

Babin, A.

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Bagdasarov, K. S.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Bass, M.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

Besser, R. J.

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

Bourdet, G. L.

Budenkovaa, O. N.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Bul’kanovb, A. M.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Bunch, R. M.

Byer, R. L.

Chen, J.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
[CrossRef]

Chiku, S.

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

Cho, S.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Clubley, D.

Crosswhite, H. M.

Davis, J. A.

Day, G. W.

Deeter, M. N.

Deljouravesh, R.

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

Dieke, G. H.

Dodokin, A. P.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Dong, C. M.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Edel’man, I. S.

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Fedorov, E. A.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Fejer, M. M.

French, R. H.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

Fujii, T.

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

Fujimoto, Y.

Fukuda, T.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Furdyna, J. K.

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

Galazka, R. R.

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Ganschow, S.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

Geho, M.

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

Goosev, M. Y.

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

Grechishkin, R. M.

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

Guagliardo, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Guo, F.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
[CrossRef]

Gustafson, E. K.

Hennawi, J.

Ho, C. Y.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).

Hwang, Y. H.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Ilyashenko, S. E.

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Ivanovb, I. A.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Jeen, G. G.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Jia, Z. T.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Jimenez-Gonzalez, H. J.

H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992).
[CrossRef]

Kagamitani, Y.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Kalaevc, V. V.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Kan, H.

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

Kawanaka, J.

Kawashima, T.

Khazanov, E.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Khazanov, E. A.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

Kim, H. K.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Kim, T. A.

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Kiselev, A.

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Klemens, P. G.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).

Klimm, D.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

Kokta, M. R.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

Koptsik, S. V.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

Kowalczyk, L.

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Koziarska-Glinka, B.

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Krinchik, G. S.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Kruglyashov, S. B.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Levitin, R. Z.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Li, H.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

Lundock, R.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Luo, H.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Lyskov, V. A.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

Machida, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Makarov, A. I.

V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
[CrossRef]

Mal’shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Malshakov, A. N.

Mansell, J. D.

McFeron, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Mee, J. E.

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

Mehl, O.

Mikio, G.

G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
[CrossRef]

Milner, T. E.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

Mukimov, K. M.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Nakatsuka, M.

Nekvasil, V.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Neustroev, N. S.

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

Nikitin, P. I.

P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990).
[CrossRef]

Nozawa, H.

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Orlov, V. N.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Padula, C. F.

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

Palashov, O.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Palashov, O. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

Park, H. Y.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Pasmanik, G.

Pawlak, D. A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Perevezentsev, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

Petrovskiy, G. T.

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Petrovsky, G. T.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).

Pinnow, D. A.

Popov, A. I.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

Poteomkin, A.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
[CrossRef]

V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
[CrossRef]

Powell, R. W.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).

Pulliam, G. R.

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

Qin, L. J.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Reiche, P.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

Reitze, D.

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
[CrossRef]

Remizov, M. V.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Rich, T. C.

Rose, A. H.

Ru, J.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

Sato, H.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Savchuk, A. I.

P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Shaveleov, O.

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Smirnova, L. A.

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Sokolov, B. Y.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Sorokin, A. A.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Steinitz, M.

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

Suchocki, A.

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Swimm, R. T.

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

Takagi, T.

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

Takashi, F.

G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
[CrossRef]

Takenori, S.

G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
[CrossRef]

Tang, D. Y.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Tao, X. T.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Tokita, S.

Touloukian, Y. S.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).

Uecker, R.

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

Um, Y. H.

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Valiev, U. V.

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Van Khoi, L.

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Varkhulskaya, I.

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Vasilieva, M. G.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Vetrovec, J.

J. Vetrovec, “Ultrahigh-average power solid-state laser,” Proc. SPIE 4760, 491–505 (2002).
[CrossRef]

Voitovich, A. V.

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

Voytovich, A. V.

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

Vyatkin, A. G.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Weil, R.

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

Williams, P. A.

Xie, G. Q.

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Yagi, H.

Yampolsky,

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

Yanagitani, T.

Yasuhara, R.

Yoshida, H.

Yoshida, S.

Yoshikawa, A.

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Young, C. G.

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

Yu, H.

Yufereva, V. S.

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

Zarubina, T.

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Zarubina, T. V.

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Zelenogorskii, V. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Zhang, W.

W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
[CrossRef]

Zhao, B.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

Zheleznov, D. S.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

Zhuang, N.

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

Zvezdin, A. K.

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

Appl. Opt. (8)

G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963).
[CrossRef]

J. A. Davis and R. M. Bunch, “Temperature dependence of the Faraday rotation of Hoya FR-5 glass,” Appl. Opt. 23, 633–636(1984).
[CrossRef] [PubMed]

A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
[CrossRef]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

G. L. Bourdet and H. Yu, “Longitudinal temperature distribution in an end-pumped solid-state amplifier medium: application to a high average power diode pumped Yb:YAG thin disk amplifier,” Appl. Opt. 46, 6033–6041 (2007).
[CrossRef] [PubMed]

P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
[CrossRef] [PubMed]

T. C. Rich and D. A. Pinnow, “Optical absorption in fused silica and fused quartz at 1.06 μ,” Appl. Opt. 12, 2234–2234 (1973).
[CrossRef] [PubMed]

Appl. Phys. B (1)

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of LiTb(MoO4)2 crystal,” Appl. Phys. B 94, 437–441 (2009).
[CrossRef]

Class. Quantum Grav. (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Grav. 19, 1793–1801 (2002).
[CrossRef]

Cryst. Res. Technol. (1)

S. Ganschow, D. Klimm, P. Reiche, and R. Uecker, “On the crystallization of terbium aluminium garnet,” Cryst. Res. Technol. 34, 615–619 (1999).
[CrossRef]

Crystallogr. Rep. (1)

O. N. Budenkovaa, M. G. Vasilieva, V. S. Yufereva, I. A. Ivanovb, A. M. Bul’kanovb, and V. V. Kalaevc, “Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method,” Crystallogr. Rep. 53, 1181–1190 (2008).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

IEEE Trans. Magn. (1)

J. E. Mee, G. R. Pulliam, J. L. Archer, and R. J. Besser, “Magnetic oxide films,” IEEE Trans. Magn. 5, 717–727 (1969).
[CrossRef]

J. Appl. Phys. (2)

R. Weil, Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0,1Te,” J. Appl. Phys. 78, 6330–6331 (1995).
[CrossRef]

M. E. Innocenzi, R. T. Swimm, M. Bass, R. H. French, and M. R. Kokta, “Optical absorption in undoped yttrium aluminum garnet,” J. Appl. Phys. 68, 1200–1204 (1990).
[CrossRef]

J. Cryst. Growth (3)

W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12 single crystal,” J. Cryst. Growth 306, 195–199(2007).
[CrossRef]

F. Guo, J. Ru, H. Li, N. Zhuang, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008).
[CrossRef]

G. Mikio, S. Takenori, and F. Takashi, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267, 188–193(2004).
[CrossRef]

J. Magn. Magn. Mater. (3)

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, H. Y. Park, and G. G. Jeen, “Temperature dependence of the Faraday rotation in diluted magnetic semiconductors Cd1−x−yMnxZnyTe crystals,” J. Magn. Magn. Mater. 304, e312–e314 (2006).
[CrossRef]

Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, “Magneto-optical properties in diluted magnetic semiconductors Cd0.65−yMn0.35NiyTe single crystals,” J. Magn. Magn. Mater. 310, 2702–2704 (2007).
[CrossRef]

R. M. Grechishkin, M. Y. Goosev, S. E. Ilyashenko, and N. S. Neustroev, “High-resolution sensitive magneto-optic ferrite-garnet films with planar anisotropy,” J. Magn. Magn. Mater. 157–158, 305–306 (1996).
[CrossRef]

J. Opt. Technol. (1)

T. V. Zarubina and G. T. Petrovsky, “Magnetooptical glasses made in Russia,” J. Opt. Technol. 59, 48–52 (1992).

JETP Lett. (1)

A. K. Zvezdin, S. V. Koptsik, G. S. Krinchik, R. Z. Levitin, V. A. Lyskov, and A. I. Popov, “Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K,” JETP Lett. 37, 393–396 (1983).

Jpn. J. Appl. Phys. (1)

M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44, 4967–4970(2005).
[CrossRef]

Laser Phys. (1)

L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, and X. T. Tao, “Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber,” Laser Phys. 18, 719–721.
[CrossRef]

Mater. Res. Bull. (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37, 1–10 (2002).
[CrossRef]

Opt. Commun. (1)

I. B. Mukhin, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

L. Kowalczyk, B. Koziarska-Glinka, L. Van Khoi, R. R. Galazka, and A. Suchocki, “Near band-gap optical nonlinearities and bistability in Cd1−xMnxTe,” Opt. Mater. 14, 161–170 (2000).
[CrossRef]

Opticheskii Zhurnal (1)

N. Andreev, A. Babin, T. Zarubina, A. Kiselev, O. Palashov, E. Khazanov, and O. Shaveleov, “Thermooptical constant of magneto-active glasses,” Opticheskii Zhurnal 67, 556–558(2000).
[CrossRef]

Phys. Rev. B (2)

H. J. Jimenez-Gonzalez and R. L. Aggarwal, “Near-infrared Faraday rotation in Cd1−xMnxTe,” Phys. Rev. B 45, 14011–14018(1992).
[CrossRef]

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Phys. Solid State (1)

U. V. Valiev, G. S. Krinchik, S. B. Kruglyashov, R. Z. Levitin, K. M. Mukimov, V. N. Orlov, and B. Y. Sokolov, “On the nature of the Faraday effect in paramagnetic rare-earth iron garnet Ta3Ga5O12,” Phys. Solid State 24, 2818–2820 (1982).

Proc. SPIE (1)

J. Vetrovec, “Ultrahigh-average power solid-state laser,” Proc. SPIE 4760, 491–505 (2002).
[CrossRef]

Quantum Electron. (4)

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

E. V. Antonov, K. S. Bagdasarov, I. Varkhulskaya, A. P. Dodokin, V. Nekvasil, M. V. Remizov, A. A. Sorokin, and E. A. Fedorov, “ESR and magnetic susceptibility of Nd:YAG crystals,” Quantum Electron. 23, 320–322 (1993).
[CrossRef]

Sov. J. Opt. Technol. (1)

T. V. Zarubina, T. A. Kim, G. T. Petrovskiy, L. A. Smirnova, and I. S. Edel’man, “Temperature dependence and dispersion of Faraday effect in glass based on oxide of terbium and cerium,” Sov. J. Opt. Technol. 11, 33–45 (1987).

Sov. J. Quantum Electron. (1)

V. S. Averbakh, A. I. Makarov, and A. K. Poteomkin, “Problem of increasing the brightness in doubling the frequency of laser radiation,” Sov. J. Quantum Electron. 14, 1372–1377 (1984).
[CrossRef]

Sov. Phys. Usp. (1)

P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990).
[CrossRef]

Other (7)

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of the Yb:YAG crystal in the temperature range 80–300 K,” Quantum Electron. (to be published).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

www.mt-berlin.com/frames_cryst/crystals_frameset1.htm, “MolTech GmbH.”

E.Khazanov, ed., Faraday Isolators for High Average Power Lasers, Advances in Solid State Lasers Development and Applications (INTECH, 2010).

Corning, Incorporated, “Calcium fluoride product information sheet,” www.corning.com/specialtymaterials.

International Crystal Laboratories, “Potassium chloride (KCl) optical crystals,” www.internationalcrystal.net/optics_20.htm.

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity, non-metallic solids,” in Thermal Properties of Matter, Vol.  2 (IFI/Plenum, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the experiment on studying the temperature dependence of thermal depolarization and the Verdet constant: 1, ytterbium fiber laser, λ = 1.07 μm ; 2, cryostat (dashed curve); 3, silica windows; 4, magnetic system; 5, MOE; 6, quartz wedges; 7, Glan prism; 8, absorber with water cooling; 9, CCD camera.

Fig. 2
Fig. 2

H z in the magnetic system without magnetic conductors (solid curve) and with magnetic conductors (dashed curve).

Fig. 3
Fig. 3

Temperature dependence of the normalized angle of turn of the polarization plane: (a) TGG (circles), Nd:YAG (triangles), GGG (squares) and (b) in CdMnTe (rhombuses), in MOG 04 (squares), in quartz (circles).

Fig. 4
Fig. 4

Temperature dependence of normalized thermally induced depolarization in GGG (contour symbols: γ min T , triangles; γ max T , squares; γ 111 T , rhombuses), in TGG (black symbols: γ min T , triangles; γ max T , squares), and in MOG-04 glass (circles).

Tables (1)

Tables Icon

Table 1 Characteristics of Magnetoactive Media for λ = 1.07 μm a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

γ = P d / P 0 ,
I [ dB ] = 10 · lg ( γ 1 ) .
γ term = γ T + γ V .
γ min T = A π 2 ( α Q L P λ κ ) 2 ,
γ max T = A π 2 ( ξ α Q L P λ κ ) 2 .
γ 111 T = A π 2 ( α Q L P λ κ · 1 + 2 ξ 3 ) 2 ,
ξ = 2 p 44 p 11 p 12 .
Q = ( 1 L d L d T ) n 0 3 4 1 + υ 1 υ ( p 11 p 12 ) ,
γ V = B ( α P κ 1 V d V d T ) 2 .
L * = π B A λ | 1 Q V d V d T | .
| ξ | = ( γ max γ min ) 1 / 2 .
φ = V H L ,
γ 001 T = A 16 ( P λ H 1 M 001 ) 2 ,
γ 111 T = A 16 ( P λ H 1 M 111 ) 2 ,
M 001 = V κ α Q ,
M 111 = V κ α Q 3 1 + 2 ξ .
V = V h + V e = V h + V A + V B + V C .
V H = ( C m + C A ) B 7 / 2 ( μ H k T ) + V h H .
V = A T + B .

Metrics