Abstract

We demonstrate a modified zero-additional-phase spectral phase interferometry for direct electric-field reconstruction setup, where two quasi-monochromatic auxiliary pulses employed for sum-frequency generation are derived from a 4f zero-dispersion compressor. With adequate flexibility and convenience to change the spectral shear and the frequencies of the auxiliary pulses, this device can cover a wide variety of ultrashort pulses with diverse central wavelengths, bandwidths, and durations. We show its applicability by measuring different pulses from three femtosecond sources.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
    [CrossRef] [PubMed]
  2. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920–922(1999).
    [CrossRef]
  3. A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
    [CrossRef]
  4. K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Molmer, S. Keiding, R. E. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
    [CrossRef] [PubMed]
  5. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
    [CrossRef]
  6. V. Petrov, F. Noack, P. Tzankov, M. Ghotbi, M. Ebrahim-Zadeh, I. Nikolov, and I. Buchvarov, “High-power femtosecond optical parametric amplification at 1 kHz in BiB3O6 pumped at 800 nm,” Opt. Express 15, 556–563 (2007).
    [CrossRef] [PubMed]
  7. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [CrossRef]
  8. M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
    [CrossRef]
  9. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20 fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
    [CrossRef] [PubMed]
  10. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326–328 (2005).
    [CrossRef] [PubMed]
  11. T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. Lett. 34, 881–883 (2009).
    [CrossRef] [PubMed]
  12. H. Tomita and H. Nishioka, “Wide-time-range spectral-shearing interferometry,” Opt. Express 17, 14023–14028 (2009).
    [CrossRef] [PubMed]
  13. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
    [CrossRef]
  14. S. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFO2.
    [PubMed]
  15. J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Ultrabroadband beam splitter with matched group delay dispersion,” Opt. Lett. 30, 1569–1571(2005).
    [CrossRef] [PubMed]

2009 (2)

2007 (1)

2006 (1)

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

2005 (2)

2004 (2)

2002 (1)

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

1999 (3)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920–922(1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

1998 (1)

1997 (1)

Andersen, T. V.

Angelow, G.

Austin, D. R.

Baum, P.

Birge, J. R.

Buchvarov, I.

Butkus, R.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Chen, Y.

Cho, S. H.

Dorrer, C.

Dubietis, A.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Fujimoto, J. G.

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Ghotbi, M.

Gorza, S.

S. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFO2.
[PubMed]

Hansen, K. P.

Haus, H. A.

Hilligsoe, K. M.

Hirasawa, M.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

Ippen, E. P.

Kaertner, F. X.

Karlsson, H.

Kärtner, F. X.

Keiding, S.

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Kim, J.

Kosik, E. M.

Kristiansen, R. E.

Larsen, J. J.

Laurell, F.

Lochbrunner, S.

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Molmer, K.

Morgner, U.

Morita, R.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Nielsen, C. K.

Nikolov, I.

Nishioka, H.

Nnakagawa, N.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Noack, F.

Paulsen, H. N.

Penman, Z.

Petrov, V.

Piskarskas, A. P.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Radunsky, A. S.

Reid, D. T.

Riedle, E.

Scheuer, V.

Sharma, V.

Shigekawa, H.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Sibbett, W.

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Tomita, H.

Tschudi, T.

Tzankov, P.

Walmsley, I. A.

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. Lett. 34, 881–883 (2009).
[CrossRef] [PubMed]

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326–328 (2005).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

S. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFO2.
[PubMed]

Wasylczyk, P.

S. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFO2.
[PubMed]

Witting, T.

Yamamoto, K.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Yamashita, M.

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

Appl. Phys. B (1)

M. Hirasawa, N. Nnakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, F. X. Kaertner, V. Scheuer, and G. Angelow, “Ultrabroadband beam splitter with matched group delay dispersion,” Opt. Lett. 30, 1569–1571(2005).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920–922(1999).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20 fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
[CrossRef] [PubMed]

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30, 326–328 (2005).
[CrossRef] [PubMed]

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. Lett. 34, 881–883 (2009).
[CrossRef] [PubMed]

Science (1)

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999).
[CrossRef] [PubMed]

Other (1)

S. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped beams,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFO2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

MZAP-SPIDER experimental setup. MH, mirror with a hole at its center.

Fig. 2
Fig. 2

(a) Spectra of a pulse centered at 808 nm and the ancilla. (b) SPIDER spectra of the laser pulse (upper trace) and the stretched pulse by a 120 - mm -thick BK7 glass (lower trace). (c) Measured spectral phases of the laser pulse (solid curve, 20 × magnified for detail observation) and the stretched pulse (dotted curve), as well as the calculated curve of the stretched pulse (gray). (d) Reconstructed temporal intensity and phase of the laser pulse. (e) Retrieved temporal intensity and phase of the stretched pulse.

Fig. 3
Fig. 3

Comparison of measured interferometric autocorrelation (black) with the MZAP-SPIDER-reconstructed IAC (gray). The lower trace is the difference.

Fig. 4
Fig. 4

(a) Spectra of a pulse from MaiTai HP and the ancilla. (b) SPIDER spectra of the laser pulse (upper trace) and the stretched pulse by an 80 - mm -thick BK7 glass (lower trace). (c) Retrieved spectral phases of the laser pulse (dotted curve) and the stretched pulse (solid curve).

Fig. 5
Fig. 5

(a) Spectra of a signal pulse from OPIUM AUTO and the ancilla. (b) SPIDER spectra of the laser pulse (upper trace) and the stretched pulse by an 80 - mm -thick BK7 glass (lower trace). (c) Retrieved spectral phases of the signal pulse (dotted curve) and the stretched pulse (solid curve).

Fig. 6
Fig. 6

Results of the idler pulses from OPIUM AUTO centered at (a) 1230 and (b)  1610 nm , respectively. The dots denote the retrieved phase of the original idler pulses, while the black and gray lines denote, respectively, the measured and calculated phases of the stretched pulses by an 80 - mm -thick BK7 glass.

Metrics